The answer is D. You can't make an equation out of this!
⭐ Please consider brainliest! ⭐
✉️ If any further questions, inbox me! ✉️
We are given the function:
g(x) = 6 (4)^x
Part A.
To get the average rate of change, we use the formula:
average rate of change = [g(x2) – g(x1)] / (x2 – x1)
Section A:
average rate of change = [6 (4)^1 – 6 (4)^0] / (1 – 0) =
18
Section B:
average rate of change = [6 (4)^3 – 6 (4)^2] / (3 – 2) =
288
Part B.
288 / 18 = 16
Therefore the average rate of change of Section B is 16 times
greater than in Section A.
<span>The average rate of change is greater between x = 2 to x = 3 than between
x = 1 and x = 0 because an exponential function's rate of change increases
with increasing x (not constant).</span>
Considering the given stem-and-leaf plot, the quartiles are given as follows:
- The first quartile is of 67.5.
- The second quartile, which is the median, is of 84.5.
- The third quartile is of 91.5.
<h3>What are the median and the quartiles of a data-set?</h3>
- The median of the data-set separates the bottom half from the upper half, that is, it is the 50th percentile.
- The first quartile is the median of the first half of the data-set.
- The third quartile is the median of the second half of the data-set.
There is an even number of elements(26), hence the median is the mean of the 13th and 14th elements, which are 83 and 86, hence:
Me = (83 + 86)/2 = 84.5.
The first half has 12 elements, hence the first quartile is the mean of the 6th and 7th elements, which are 67 and 68, hence:
Q1 = (67 + 68)/2 = 67.5.
The third half also has 12 elements, starting at the second 86, hence the third quartile is the mean of the 6th and 7th elements of this half, hence:
Q3 = (91 + 92)/2 = 91.5.
More can be learned about the quartiles of a data-set at brainly.com/question/28017610
#SPJ1
Answer:
The reasonable prediction for successful rolls is 4.
Step-by-step explanation:
Assuming the rolling cube is a fair 6 sided cube, so the probability of success of one roll is given as
The total success is given as
For 24 rolls it is given as
So the reasonable prediction for successful rolls is 4.