Answer:
- cos(A) = 3/5
- cos(B) = 0
- cos(C) = 4/5
Step-by-step explanation:
The mnemonic SOH CAH TOA reminds you of the relation between the cosine of an angle and the sides of the triangle.
Cos = Adjacent/Hypotenuse
__
<h3>Angle A</h3>
In the given triangle, the hypotenuse is AC. The side adjacent to angle A is AB, so its cosine is ...
cos(A) = AB/AC
cos(A) = 3/5
__
<h3>Angle B</h3>
The right angle in the triangle is angle B. The cosine of a right angle is 0.
cos(B) = 0
__
<h3>Angle C</h3>
The side adjacent to angle C is CB, so its cosine is ...
cos(C) = CB/AC
cos(C) = 4/5
3÷8+1÷8-(9÷8+5÷8)
=3÷8+1÷8-(14÷8)
=3÷8+1÷8-14÷8
=(3+1-14)÷8
=-10÷8
=-5÷4
=-1.25
6:15:21
6:15:21= 2:5:7
<em>(when divided by 3)</em>
39/1.5 = 26 km per hour
51/3 = 17 km per hour
Then you need the mean. 26+17/2 = 21.5 km per hour
Answer:
6.68, 13.37, 14.95
Step-by-step explanation:
One of the legs is twice as long as the other.
b = 2a
The perimeter is 35.
35 = a + b + c
The triangle is a right triangle.
c² = a² + b²
Three equations, three variables. Start by plugging the first equation into the second and solving for c.
35 = a + 2a + c
c = 35 − 3a
Now plug this and the first equation into the Pythagorean theorem:
(35 − 3a)² = a² + (2a)²
1225 − 210a + 9a² = a² + 4a²
1225 − 210a + 4a² = 0
Solve with quadratic formula:
a = [ -(-210) ± √((-210)² − 4(4)(1225)) ] / 2(4)
a = (210 ± √24500) / 8
a ≈ 6.68 or 45.82
Since the perimeter is 35, a = 6.68. Therefore, the other sides are:
b ≈ 13.37
c ≈ 14.95