Answer:
y=1.003009+0.003453x
or
GPA=1.003009+0.003453(SAT Score)
Step-by-step explanation:
The least square regression equation can be written as
y=a+bx
In the given scenario y is the GPA and x is SAT score because GPA depends on SAT score.
SAT score (X) GPA (Y) X² XY
421 2.93 177241 1233.53
375 2.87 140625 1076.25
585 3.03 342225 1772.55
693 3.42 480249 2370.06
608 3.66 369664 2225.28
392 2.91 153664 1140.72
418 2.12 174724 886.16
484 2.5 234256 1210
725 3.24 525625 2349
506 1.97 256036 996.82
613 2.73 375769 1673.49
706 3.88 498436 2739.28
366 1.58 133956 578.28
sumx=6892
sumy=36.84
sumx²=3862470
sumxy=20251.42
n=13

b=9367.18/2712446
b=0.003453
a=ybar-b(xbar)
ybar=sum(y)/n
ybar=2.833846
xbar=sum(x)/n
xbar=530.1538
a=2.833846-0.003453*(530.1538)
a=1.003009
Thus, required regression equation is
y=1.003009+0.003453x.
The least-squares regression equation that shows the best relationship between GPA and the SAT score is
GPA=1.003009+0.003453(SAT Score)
It's 21 square units. If you map it on a complex plane (x-axis is real numbers, y-axis is imaginary numbers) you'll see that the sides of the rectangle is 3 and 7 which multiply to 21.
Angle w equals 130 degrees.
Explanation:
A line equals: 180 degrees total.
180-50=130
The area is 120/(1/4) or 120 x 4 or 480 square inches
the width is 6/(1/2) or 6 x 2 or 12 inches
to find the length, divide the area by the width
480/12= 40
40 inches
Hope this helps :)
Answer:
solution:-We know that for any two finite sets A and B, n(A∪B)=n(A)+n(B)−n(A∩B).
Here, it is given that n(A)=20,n(B)=30 and n(A∪B)=40, therefore,
n(A∪B)=n(A)+n(B)−n(A∩B)
⇒40=20+30−n(A∩B)
⇒40=50−n(A∩B)
⇒n(A∩B)=50−40
⇒n(A∩B)=10
Hence, n(A∩B)=10
Step-by-step explanation:
hope it helps you friend ☺️