35<em>x</em>² = 7<em>x</em> • 5<em>x</em>, and
5<em>x</em> (7<em>x</em> + 3) = 35<em>x</em>² + 15<em>x</em>
Subtract this from the dividend to get an initial remainder of
(35<em>x</em>² - 48<em>x</em> - 27) - (35<em>x</em>² + 15<em>x</em>) = -63<em>x</em> - 27
-63<em>x</em> = 7<em>x</em> • (-9), and
-9 (7<em>x</em> + 3) = -63<em>x</em> - 27
Subtract this from the previous remainder to get a new one of
(-63<em>x</em> - 27) - (-63<em>x</em> - 27) = 0
and we're done.
Now just gather the terms in bold (and the remainder, but since it's 0 we leave it out). So we have
(35<em>x</em>² - 48<em>x</em> - 27) / (7<em>x</em> + 3) = 5<em>x</em> - (63<em>x</em> + 27) / (7<em>x</em> + 3)
(35<em>x</em>² - 48<em>x</em> - 27) / (7<em>x</em> + 3) = 5<em>x</em> - 9