Given:
First term of an arithmetic sequence is 2.
Sum of first 15 terms = 292.5
To find:
The common difference.
Solution:
We have,
First term: 
Sum of first 15 terms: 
The formula of sum of first n terms of an AP is
![S_n=\dfrac{n}{2}[2a+(n-1)d]](https://tex.z-dn.net/?f=S_n%3D%5Cdfrac%7Bn%7D%7B2%7D%5B2a%2B%28n-1%29d%5D)
Where, a is first term and d is common difference.
Putting
, n=15 and a=2 in the above formula, we get
![292.5=\dfrac{15}{2}[2(2)+(15-1)d]](https://tex.z-dn.net/?f=292.5%3D%5Cdfrac%7B15%7D%7B2%7D%5B2%282%29%2B%2815-1%29d%5D)
![292.5=\dfrac{15}{2}[4+14d]](https://tex.z-dn.net/?f=292.5%3D%5Cdfrac%7B15%7D%7B2%7D%5B4%2B14d%5D)
![292.5=15[2+7d]](https://tex.z-dn.net/?f=292.5%3D15%5B2%2B7d%5D)
Divide both sides by 15.




Dividing both sides by 7, we get


Therefore, the common difference is 2.5.
To tell if an equation has infinite solutions, the equation will be equal to each other.
For example,
x = x
x + 1 = x + 1
x - y = x - y
And so on...
And in special cases,
0x = 0
0x = 0(y + 1)
They have infinite solutions because there's no constant to determine the variable.
Answer:
The answer is 5w+12.
Step-by-step explanation:
Combine like terms:
(3w+7)+(2w+5)
5w+12