<h2><u>Part A:</u></h2>
Let's denote no of seats in first row with r1 , second row with r2.....and so on.
r1=5
Since next row will have 10 additional row each time when we move to next row,
So,
r2=5+10=15
r3=15+10=25
<u>Using the terms r1,r2 and r3 , we can find explicit formula</u>
r1=5=5+0=5+0×10=5+(1-1)×10
r2=15=5+10=5+(2-1)×10
r3=25=5+20=5+(3-1)×10
<u>So for nth row,</u>
rn=5+(n-1)×10
Since 5=r1 and 10=common difference (d)
rn=r1+(n-1)d
Since 'a' is a convention term for 1st term,
<h3>
<u>⇒</u><u>rn=a+(n-1)d</u></h3>
which is an explicit formula to find no of seats in any given row.
<h2><u>Part B:</u></h2>
Using above explicit formula, we can calculate no of seats in 7th row,
r7=5+(7-1)×10
r7=5+(7-1)×10 =5+6×10
r7=5+(7-1)×10 =5+6×10 =65
which is the no of seats in 7th row.
To find the answer you need to find the square root of e^2 to get e so what you do to one side of the equation you do to the other side of the equation so find the square root of 0.36.
e=positive or negative 0.6
Answer:
Function B has the greater initial value because the initial value for function A is 4 and the initial value for Function B is 5
Step-by-step explanation:
- <em>The initial value of a function is the output value of the function when the input value is 0</em>
Initial value of A is y=4 at x=0,
and
initial value of B is y=0*6+5= 5 at x=0
Function B has the greater initial value because the initial value for function A is 4 and the initial value for Function B is 5
Answer: RQ= 8.99 ( approx)
Step-by-step explanation:
Let MR= x
Since, In triangle, PRQ, tan 75°= 
⇒ RQ= 
Now, In triangle MRQ,
tan 60°= 
⇒ RQ= 
On equating both values of RQ,

⇒
⇒
⇒
⇒
⇒
≈15.60
Thus RQ=8.99999999999≈8.99