<h3>Given</h3>
trapezoid PSTK with ∠P=90°, KS = 13, KP = 12, ST = 8
<h3>Find</h3>
the area of PSTK
<h3>Solution</h3>
It helps to draw a diagram.
∆ KPS is a right triangle with hypotenuse 13 and leg 12. Then the other leg (PS) is given by the Pythagorean theorem as
... KS² = PS² + KP²
... 13² = PS² + 12²
... PS = √(169 -144) = 5
This is the height of the trapezoid, which has bases 12 and 8. Then the area of the trapezoid is
... A = (1/2)(b1 +b2)h
... A = (1/2)(12 +8)·5
... A = 50
The area of trapezoid PSTK is 50 square units.
Answer:
$ 1,131.56
Step-by-step explanation:
1,250x85%=1,062.50
1,062.50x6.5=69.06
1062.50+69.06=1,131.56
<h3><u>Given</u><u>:</u><u>-</u></h3>
- Perimeter of parallelogram = 66 ft
<h3><u>To</u><u> </u><u>find</u><u> </u><u>out</u><u>:</u><u>-</u></h3>
Find the longest side of a parallelogram.
<h3><u>Formula</u><u> </u><u>used</u><u>:</u><u>-</u></h3>
Perimeter of parallelogram = 2 ( a + b )
<h3>
<u>Solution:-</u><u> </u></h3>
We know that,
Perimeter of parallelogram = 2 ( a + b )
★ Substituting the values in the above formula,we get:
⇒ 66 = 2 ( 3x + 1 + 2x - 3 )
⇒ 66 = 2 ( 5x - 2 )
⇒ 66/2 = 5x - 2
⇒ 33 = 5x - 2
⇒ 5x - 2 = 33
⇒ 5x = 33 + 2
⇒ 5x = 35
⇒ x = 35/5
⇒ x = 7 ft
Now,
One side,a = 3x + 1
★ Putting the value of x
⇒ 3 × 7 + 1
⇒ 21 + 1
⇒ 22 ft
Other side,b = 2x - 3
★ Putting the value of x
⇒ 2 × 7 - 3
⇒ 14 - 3
⇒ 11 ft
Hence,the longest Side of given parallelogram is 22 ft ( 3x + 1 ) .
Answer:
1950
Step-by-step explanation:
p: 1500
r: 0.06
n: 1
t: 5
1500(1+ 0.06/1)^5
1500(1.06)^5
1500×1.3
1950