Answer:
Step-by-step explanation:
4 + 5=9
Answer:
6x + 27
Step-by-step explanation:
Multiply 3 by the numbers in parentheses
Answer:
If is the amount of salt in the tank at time , then the rate at which the amount of salt in the tank changes is given by
Let's drop the units for now. We have
We're given that the water is pure at the start, so , giving
So the amount of salt in the tank (in lbs) at time is
Step-by-step explanation:
Answer:
42%
Step-by-step explanation:
21 is 42 percentage of fifty
Answer:
Step-by-step explanation:
13.
<h3>Given</h3>
<u>Quadratic equation</u>
- 4x² - 3x - 4 = 0
- With the roots of α and β
<h3>To Find </h3>
- The quadratic equation with roots of 1/(3α) and 1/(3β)
<h3>Solution</h3>
<u>The sum and the product of the roots of the given equation:</u>
- α + β = -b/a ⇒ α + β = -(-3)/4 = 3/4
- αβ = c/a ⇒ αβ = -4/4 = - 1
<u>New equation is:</u>
- (x - 1/(3α))(x - 1/(3β)) = 0
- x² - (1/(3α) + 1/(3αβ))x + 1/(3α3β) = 0
- x² - ((3α + 3 β)/(3α3β))x + 1/(3α3β) = 0
- x² - ((α + β)/(3αβ))x + 1/(9αβ) = 0
- x² - (3/4)/(3(-1))x + 1/(9(-1)) = 0
- x² + 1/4x - 1/9 = 0
- 36x² + 9x - 4 = 0
===================
14.
<h3>Given</h3>
<u>Quadratic equation</u>
- 3x² +2x + 7 = 0
- With the roots of α and β
<h3>To Find </h3>
- The quadratic equation with roots of α + 1/β and β + 1/α
<h3>Solution</h3>
<u>The sum and the product of the roots of the given equation:</u>
- α + β = -b/a ⇒ α + β = -2/3
- αβ = c/a ⇒ αβ = 7/3
<u>New equation is:</u>
- (x - (α + 1/β))(x - (β + 1/α)) = 0
- x² - (α + 1/β + β + 1/α)x + (α + 1/β) (β + 1/α) = 0
- x² - (α + β + (α + β)/αβ )x + αβ + 1/αβ + 2 = 0
- x² - (-2/3 - (2/3)/(7/3))x + 7/3 + 1/(7/3) + 2 = 0
- x² - (-2/3 - 2/7)x + 7/3 + 3/7 + 2 = 0
- x² + (14 + 6)/21x + (49 + 9 + 42/21) = 0
- x² + 20/21x + 100/21 = 0
- 21x² + 20x + 100 = 0