1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa05 [86]
3 years ago
6

How many milliliters of a 12% alcohol solution and how many milliliters of a 30% alcohol solution must be mixed to obtain 72 ml

of a 20% alcohol solution?
Mathematics
1 answer:
Tpy6a [65]3 years ago
3 0

Target concentration = 20%.

Ratio of 12% and 30% alcohols needed

30-20 : 20-12 = 10:8 = 5:4


Volume of 12% = 72 mL * (5/(5+4)) = 40 mL

Volume of 30% = 72 mL *(4/(5+4)) = 32 mL

Total = 40+32 = 72 mL of 20%

You might be interested in
The weight of a bull clad is 388 kilograms. If it’s weight increases at a rate of 1 2/5 kilograms per day how long it will take
Alex73 [517]

Answer:

It will take  <u><em>80 days</em></u>  for the bull calf to reach a weight of 500 kilograms.

Step-by-step explanation:

Given:

The weight of a bull calf is 388 kilograms.

Now, to find the weight of bull calf of how long it will take to reach a weight of 500 kilograms, if it’s weight increases at a rate of 1 2/5 kilograms per day.

Required weight which to be increased = 500 - 388 = 112 kilograms.

Rate of weight increase = 1\frac{2}{5}=\frac{7}{5}

                                        = 1.4\ kilograms.

Thus, the time required = \frac{required\ weight}{rate\ of\ weight}

                                        = \frac{112}{1.4}

                                        = 80.

<em>The time required   =    80 days</em>.

Therefore, it will take 80 days for the bull calf to reach a weight of 500 kilograms.

5 0
3 years ago
What does x equal? <br> Thanks!
11Alexandr11 [23.1K]

Answer: 33 degrees

Step-by-step explanation:

See paper attached. (:

4 0
3 years ago
Read 2 more answers
Questions:<br>1) 2x2 + 5x + 2 = 0​
xz_007 [3.2K]

Answer:

x = -1/2 and -2

Step-by-step explanation:

Solve for <em>x</em>: Move all terms to the left side and set equal to zero. Then set each factor equal to zero.

Using the quadratic formula: Solve the equation for x by finding a, b, and c of the quadratic then applying the quadratic formula.

7 0
3 years ago
Read 2 more answers
In the diagram below secants PT &amp; PU have been drawn from exterior point P such that the four arcs intercepted have the foll
fiasKO [112]

Answer:

  • x = 30°
  • RS = 30°, SR = TU = 120°, UR = 90°
  • ∠P = 45°
  • ∠UTS = 60°

Step-by-step explanation:

(a) If RS = x, then the sum of arcs around the circle is ...

  x + 4x +4x +3x = 360°

  12x = 360°

  x = 30°

__

(b) Based on the given ratios, the arc measures are computed from x. For example, ST = TU = 4x = 4(30°) = 120°

  • RS = 30°
  • ST = 120°
  • TU = 120°
  • UR = 90°

__

(c) Angle P is half the difference of arcs TU and RS:

  ∠P = (TU -RS)/2 = (120° -30°)/2

  ∠P = 45°

__

(d) Inscribed angle UTS is half the measure of the arc it intercepts. Arc RU has the measure (30° +90°) = 120°, so the measure of UTS is ...

  ∠UTS = 120°/2 = 60°

4 0
3 years ago
Determine consecutive integer values of x between which each real zero is located.
frozen [14]

Answer:

1. x = -2 or x = sqrt(6) - 2 or x = -2 - sqrt(6)

2. x = -2.10947 or x = -0.484343 or x = 1.67884 or x = 2.91497

Step-by-step explanation:

Solve for x:

x^3 + 6 x^2 + 6 x - 4 = 0

The left hand side factors into a product with two terms:

(x + 2) (x^2 + 4 x - 2) = 0

Split into two equations:

x + 2 = 0 or x^2 + 4 x - 2 = 0

Subtract 2 from both sides:

x = -2 or x^2 + 4 x - 2 = 0

Add 2 to both sides:

x = -2 or x^2 + 4 x = 2

Add 4 to both sides:

x = -2 or x^2 + 4 x + 4 = 6

Write the left hand side as a square:

x = -2 or (x + 2)^2 = 6

Take the square root of both sides:

x = -2 or x + 2 = sqrt(6) or x + 2 = -sqrt(6)

Subtract 2 from both sides:

x = -2 or x = sqrt(6) - 2 or x + 2 = -sqrt(6)

Subtract 2 from both sides:

Answer: x = -2 or x = sqrt(6) - 2 or x = -2 - sqrt(6)

_________________________________________

Solve for x:

x^4 - 2 x^3 - 6 x^2 + 8 x + 5 = 0

Eliminate the cubic term by substituting y = x - 1/2:

5 + 8 (y + 1/2) - 6 (y + 1/2)^2 - 2 (y + 1/2)^3 + (y + 1/2)^4 = 0

Expand out terms of the left hand side:

y^4 - (15 y^2)/2 + y + 117/16 = 0

Subtract -3/2 sqrt(13) y^2 - (15 y^2)/2 + y from both sides:

y^4 + (3 sqrt(13) y^2)/2 + 117/16 = (3 sqrt(13) y^2)/2 + (15 y^2)/2 - y

y^4 + (3 sqrt(13) y^2)/2 + 117/16 = (y^2 + (3 sqrt(13))/4)^2:

(y^2 + (3 sqrt(13))/4)^2 = (3 sqrt(13) y^2)/2 + (15 y^2)/2 - y

Add 2 (y^2 + (3 sqrt(13))/4) λ + λ^2 to both sides:

(y^2 + (3 sqrt(13))/4)^2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2 = -y + (3 sqrt(13) y^2)/2 + (15 y^2)/2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2

(y^2 + (3 sqrt(13))/4)^2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2 = (y^2 + (3 sqrt(13))/4 + λ)^2:

(y^2 + (3 sqrt(13))/4 + λ)^2 = -y + (3 sqrt(13) y^2)/2 + (15 y^2)/2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2

-y + (3 sqrt(13) y^2)/2 + (15 y^2)/2 + 2 λ (y^2 + (3 sqrt(13))/4) + λ^2 = (2 λ + 15/2 + (3 sqrt(13))/2) y^2 - y + (3 sqrt(13) λ)/2 + λ^2:

(y^2 + (3 sqrt(13))/4 + λ)^2 = y^2 (2 λ + 15/2 + (3 sqrt(13))/2) - y + (3 sqrt(13) λ)/2 + λ^2

Complete the square on the right hand side:

(y^2 + (3 sqrt(13))/4 + λ)^2 = (y sqrt(2 λ + 15/2 + (3 sqrt(13))/2) - 1/(2 sqrt(2 λ + 15/2 + (3 sqrt(13))/2)))^2 + (4 (2 λ + 15/2 + (3 sqrt(13))/2) (λ^2 + (3 sqrt(13) λ)/2) - 1)/(4 (2 λ + 15/2 + (3 sqrt(13))/2))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 15/2 + (3 sqrt(13))/2) (λ^2 + (3 sqrt(13) λ)/2) - 1 = 8 λ^3 + 18 sqrt(13) λ^2 + 30 λ^2 + 45 sqrt(13) λ + 117 λ - 1 = 0.

Thus the root λ = 1/4 (-3 sqrt(13) - 5) + (2 2^(2/3) (i sqrt(3) + 1))/(i sqrt(183) - 29)^(1/3) + ((-i sqrt(3) + 1) (i sqrt(183) - 29)^(1/3))/(2 2^(2/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + (3 sqrt(13))/4 + λ)^2 = (y sqrt(2 λ + 15/2 + (3 sqrt(13))/2) - 1/(2 sqrt(2 λ + 15/2 + (3 sqrt(13))/2)))^2

Take the square root of both sides:

y^2 + (3 sqrt(13))/4 + λ = y sqrt(2 λ + 15/2 + (3 sqrt(13))/2) - 1/(2 sqrt(2 λ + 15/2 + (3 sqrt(13))/2)) or y^2 + (3 sqrt(13))/4 + λ = -y sqrt(2 λ + 15/2 + (3 sqrt(13))/2) + 1/(2 sqrt(2 λ + 15/2 + (3 sqrt(13))/2))

Solve using the quadratic formula:

y = 1/4 (sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)) + sqrt(2) sqrt((108 - 24 sqrt(13) λ - 16 λ^2 - 4 sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)))/(4 λ + 15 + 3 sqrt(13)))) or y = 1/4 (sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)) - sqrt(2) sqrt((108 - 24 sqrt(13) λ - 16 λ^2 - 4 sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)))/(4 λ + 15 + 3 sqrt(13)))) or y = 1/4 (sqrt(2) sqrt((108 - 24 sqrt(13) λ - 16 λ^2 + 4 sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)))/(4 λ + 15 + 3 sqrt(13))) - sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13))) or y = 1/4 (-sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)) - sqrt(2) sqrt((108 - 24 sqrt(13) λ - 16 λ^2 + 4 sqrt(2) sqrt(4 λ + 15 + 3 sqrt(13)))/(4 λ + 15 + 3 sqrt(13)))) where λ = 1/4 (-3 sqrt(13) - 5) + (2 2^(2/3) (i sqrt(3) + 1))/(i sqrt(183) - 29)^(1/3) + ((-i sqrt(3) + 1) (i sqrt(183) - 29)^(1/3))/(2 2^(2/3))

Substitute λ = 1/4 (-3 sqrt(13) - 5) + (2 2^(2/3) (i sqrt(3) + 1))/(i sqrt(183) - 29)^(1/3) + ((-i sqrt(3) + 1) (i sqrt(183) - 29)^(1/3))/(2 2^(2/3)) and approximate:

y = -2.60947 or y = -0.984343 or y = 1.17884 or y = 2.41497

Substitute back for y = x - 1/2:

x - 1/2 = -2.60947 or y = -0.984343 or y = 1.17884 or y = 2.41497

Add 1/2 to both sides:

x = -2.10947 or y = -0.984343 or y = 1.17884 or y = 2.41497

Substitute back for y = x - 1/2:

x = -2.10947 or x - 1/2 = -0.984343 or y = 1.17884 or y = 2.41497

Add 1/2 to both sides:

x = -2.10947 or x = -0.484343 or y = 1.17884 or y = 2.41497

Substitute back for y = x - 1/2:

x = -2.10947 or x = -0.484343 or x - 1/2 = 1.17884 or y = 2.41497

Add 1/2 to both sides:

x = -2.10947 or x = -0.484343 or x = 1.67884 or y = 2.41497

Substitute back for y = x - 1/2:

x = -2.10947 or x = -0.484343 or x = 1.67884 or x - 1/2 = 2.41497

Add 1/2 to both sides:

Answer: x = -2.10947 or x = -0.484343 or x = 1.67884 or x = 2.91497

8 0
3 years ago
Other questions:
  • ANSWERRRRR PLEASE!! ~~
    11·2 answers
  • find the common ratio r for the geometric sequence and use r to find the next three terms 5,15,45,135
    11·1 answer
  • Every sixth visitor to an animal shelter gets a free animal calendar.every twentieth vistor gets a free animal toy.which visitor
    6·1 answer
  • The bases of a circular cylinder are two ___ circles.
    9·2 answers
  • PLEASE HELP.BEST ANSWER TO BRAINILIEST ANSWER.
    7·1 answer
  • Round off 10,160,555 to the nearest hundred thousand
    14·2 answers
  • If something was $45 and it increased to $56, what is the percent change?
    6·1 answer
  • How long will it take to triple an investment if the interest rate is 5.6% compounded continuously
    10·1 answer
  • How to write an expression combining areas of four triangles and two squares
    13·1 answer
  • A payday loan store charges $45 for a one-month loan of $540. What annual interest rate is this equivalent to?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!