The answer will be C
_
5/2 , /5 , 2.71 (71 Repeating) , 2 3/4
Answer:
x = 4
Step-by-step explanation:
We can use cross products to solve
84/12 = 28/x
84 * x = 12 *28
Divide each side by 84
84x/84 = 12*28/84
x =4
Answer:
436000010000
Step-by-step explanation: there
Answer:
Cosec <F = 73/55
Step-by-step explanation:
In ΔEFG, the measure of ∠G=90°, GF = 48, EG = 55, and FE = 73. What ratio represents the cosecant of ∠F?
First you must know that;
Cosecant <F = 1/sin<F
Given
∠G=90°, GF = 48, EG = 55, and FE = 73.
ED ,= hyp = 73
EG = opp = 55*side facing <F
Using DOH CAH TOA
Sin theta = opp/hyp
Sin <F= 55/73
Reciprocate both sides
1/sinF = 73/55
Cosec <F = 73/55
The formula is f(x) = a x ^ 3 + b x ^ 2 + c x + d
f '(x) = 3ax^2 + 2bx + c.
f(- 3) = 3 ==> - 27a + 9b - 3c + d = 3
f '(- 3) = 0 (being a most extreme) ==> 27a - 6b + c = 0.
f(1) = 0 ==> a + b + c + d = 0
f '(1) = 0 (being a base) ==> 3a + 2b + c = 0.
-
Along these lines, we have the four conditions
- 27a + 9b - 3c + d = 3
a + b + c + d = 0
27a - 6b + c = 0
3a + 2b + c = 0
Subtracting the last two conditions yields 24a - 8b = 0 ==> b = 3a.
Along these lines, the last condition yields 3a + 6a + c = 0 ==> c = - 9a.
Consequently, we have from the initial two conditions:
- 27a + 9(3a) - 3(- 9a) + d = 3 ==> 27a + d = 3
a + 3a - 9a + d = 0 ==> d = 5a.
Along these lines, a = 3/32 and d = 15/32.
==> b = 9/32 and c = - 27/32.
That is, f(x) = (1/32)(3x^3 + 9x^2 - 27x + 15).