Answer:
Step-by-step explanation:
11) First write in decreasing exponential terms and fill in blanks with zeros.
Our goal is to eliminate all term in the dividend by subtraction
________________
2v - 2 | 2v³ - 16v² + 0v + 13
we see that 2v needs to be multiplied by 1v² to eliminate the first term
<u> v² </u>
2v - 2 | 2v³ - 16v² + 0v + 13
<u>- (2v³ - 2v²)</u>
0 - 14v²
multiply your estimate by your divisor and subtract from the dividend.
bring down the next term and repeat.
<u> v² -7v </u>
2v - 2 | 2v³ - 16v² + 0v + 13
<u>- (2v³ - 2v²)</u>
0 - 14v² + 0v
<u>-(-14v² + 14v)</u>
- 14v
repeat again
<u />
<u> v² - 7v - 7 </u>
2v - 2 | 2v³ - 16v² + 0v + 13
<u>- (2v³ - 2v²)</u>
0 - 14v² + 0v
<u>-(-14v² + 14v)</u>
- 14v + 13
<u>-(-14v + 14)</u>
-1
and remainder gets put over the divisor and appended
v² - 7v - 7 - 1/(2v - 2)
13) Same process
<u> </u>
5a + 1 | 40a³ - 12a² - 39a - 5
<u> 8a² </u>
5a + 1 | 40a³ - 12a² - 39a - 5
<u>-(40a³ + 8a²)</u>
-20a² - 39a
<u> 8a² - 4a </u>
5a + 1 | 40a³ - 12a² - 39a - 5
<u>-(40a³ + 8a²)</u>
-20a² - 39a
-(-<u>20a² - 4a)</u>
-35a - 5
<u> 8a² - 4a - 7 </u>
5a + 1 | 40a³ - 12a² - 39a - 5
<u>-(40a³ + 8a²)</u>
-20a² - 39a
-(<u>20a² - 4a)</u>
-35a - 5
-<u>(-35a - 7)</u>
2
8a² - 4a - 7 + 2/(5a + 1)
Answer: 11.4
Step-by-step explanation:
Answer:
12.
Explanation:
6.0m/s devide it by 0.5m/s is 12.
Hope it helps. Please mark me as brainliesttt
7-3x=4(2+x)<--Distribute
7-3x=8+4x
-7...... -7
---------------
-3x=1+4x
-4x ....-4x
--------------
-7x=1
/-7 /7
---------------
x=-1/7
Answer:
The correct answer is $3300 for simple interest and $3312.24 for compound interest.
Step-by-step explanation:
Income as working as a lifeguard = $3000
We deposit the money in a bank which offers 2% interest annually for a period of 5 years.
Case 1 : Calculating simple interest for the given situation.
Amount after 5 years = 3000 + 3000 × 2 × 5 ×
= $ ( 3000 + 300) = $3300.
Case 2 : Calculating compound interest for the given situation.
Amount after 5 years = 3000 ×
= $ 3312.24.
Thus the amount after 5 years amount simply is $3000 and compoundly is $3312.24