Answer:
1716 ;
700 ;
1715 ;
658 ;
1254 ;
792
Step-by-step explanation:
Given that :
Number of members (n) = 13
a. How many ways can a group of seven be chosen to work on a project?
13C7:
Recall :
nCr = n! ÷ (n-r)! r!
13C7 = 13! ÷ (13 - 7)!7!
= 13! ÷ 6! 7!
(13*12*11*10*9*8*7!) ÷ 7! (6*5*4*3*2*1)
1235520 / 720
= 1716
b. Suppose seven team members are women and six are men.
Men = 6 ; women = 7
(i) How many groups of seven can be chosen that contain four women and three men?
(7C4) * (6C3)
Using calculator :
7C4 = 35
6C3 = 20
(35 * 20) = 700
(ii) How many groups of seven can be chosen that contain at least one man?
13C7 - 7C7
7C7 = only women
13C7 = 1716
7C7 = 1
1716 - 1 = 1715
(iii) How many groups of seven can be chosen that contain at most three women?
(6C4 * 7C3) + (6C5 * 7C2) + (6C6 * 7C1)
Using calculator :
(15 * 35) + (6 * 21) + (1 * 7)
525 + 126 + 7
= 658
c. Suppose two team members refuse to work together on projects. How many groups of seven can be chosen to work on a project?
(First in second out) + (second in first out) + (both out)
13 - 2 = 11
11C6 + 11C6 + 11C7
Using calculator :
462 + 462 + 330
= 1254
d. Suppose two team members insist on either working together or not at all on projects. How many groups of seven can be chosen to work on a project?
Number of ways with both in the group = 11C5
Number of ways with both out of the group = 11C7
11C5 + 11C7
462 + 330
= 792
there is about a 4% chance that they answer yes and about an 8% chance they are male.
Yes probability- 6/151≈.039 which rounds to .4 or 4%
Male probability- 12/151≈.079 which rounds to .8 or 8%
One, the intersection point is (1,1)
-z³ + 5k^6 + z³ -10k^6
(-z³ cancels out with z³)
5k^6 -10k^6
(then subtract)
Answer is -5k^6
Answer: A. A=(1000-2w)*w B. 250 feet
C. 125 000 square feet
Step-by-step explanation:
The area of rectangular is A=l*w (1)
From another hand the length of the fence is 2*w+l=1000 (2)
L is not multiplied by 2, because the opposite side of the l is the barn,- we don't need in fence on that side.
Express l from (2):
l=1000-2w
Substitude l in (1) by 1000-2w
A=(1000-2w)*w (3) ( Part A. is done !)
Part B.
To find the width w (Wmax) that corresponds to max of area A we have to dind the roots of equation (1000-2w)w=0 ( we get it from (3))
w1=0 1000-2*w2=0
w2=500
Wmax= (w1+w2)/2=(0+500)/2=250 feet
The width that maximize area A is Wmax=250 feet
Part C. Using (3) and the value of Wmax=250 we can write the following:
A(Wmax)=250*(1000-2*250)=250*500=125 000 square feets