The correct answer is 110 cm
Explanation:
Fractions always include two values (one at the top and the other at the bottom) and they represent the proportion of something, for example, 1/2 of an apple means there is only half apple. Now, to calculate how much is 5/7 of 154 centimeters, simply divide the total number into the denominator (bottom number) and then multiply the result by the numerator (top number). This process is shown in detail below:
- 5 is the numerator and 7 is the denominator
5/7 of 154 cm
154 cm / 7 = 22
22 x 5 = 110 cm
Answer:
2 1/3 years
Step-by-step explanation:
4 months = 1/3 years
2 + 1/3 = 2 1/3 years
A circle is 360° all the way around; therefore, if you divide an arc's<span> degree </span>measure<span> by 360°, you </span>find<span> the fraction of the circle's circumference that the </span>arc<span> makes up. Then, if you multiply the length all the way around the circle (the circle's circumference) by that fraction, you </span>get<span> the length along the </span>arc<span>.</span>
El precio total por 3 1/2 kg de jitomate que compró Juana es 127.75
Para saber el precio total de los 3 1/2 kg de jitomate que compró Juana debemos hacer el siguiente procedimiento.
Necesitamos saber cuánto vale medio kg de jitomate, para ello dividimos 36.50 en 2.
36.50/2 = 18.25
Luego multiplicamos 36.50 por 3, para saber cuánto valen 3 kg de jitomate.
36.50 X 3 = 109.5
Por último, sumamos el precio de medio kilo con el precio de tres kilos para tener el total que pagó Juana.
109.5 + 18.25 = 127,75
Aprenda más en: brainly.com/question/16170919
Answer:
k = 13The smallest zero or root is x = -10
Step-by-step explanation:
you can write "x^2" to mean "x squared"
f(x) = x^2+3x-10
f(x+5) = (x+5)^2+3(x+5)-10 ... replace every x with x+5
f(x+5) = (x^2+10x+25)+3(x+5)-10
f(x+5) = x^2+10x+25+3x+15-10
f(x+5) = x^2+13x+30
Compare this with x^2+kx+30 and we see that k = 13
Factor and solve the equation below
x^2+13x+30 = 0
(x+10)(x+3) = 0
x+10 = 0 or x+3 = 0
x = -10 or x = -3
The smallest zero is x = -10 as its the left-most value on a number line.