Answer:
3.28 feet
Step-by-step explanation:
One meter equals to 3.28 feet.
The question isn't exactly clear what Gema wants to use her wire for, because "wrap one meter" isn't correct.
You wrap something around something else... and you can't wrap something around a meter. You can wrap around a square meter by doing the perimeter... but then you'd need more than meter to do the perimeter of a square meter (the perimeter can be around 4 meters).
So, assuming she has a length of 1 meter to cover, she would need 3.28 feet.
Given , <u>radius of circle is 1 inches </u>
We have to find circumference and area of the circle
Formula for finding area of circle :- πr²
Area :- 3.14×1² sq. inches
<u>Area :- 3.14 sq. inches </u>
Formula for finding circumference of circle :- 2πr
Circumference :- 2×3.14×1 inches
<u>Circumference :- 6.28 Inches</u>
Answer:
<em><u> </u></em><em><u>Given </u></em><em><u>:</u></em>
<em><u>=</u></em><em><u>></u></em><em><u> </u></em><em><u>An </u></em><em><u>equilateral</u></em><em><u> Triangle</u></em><em><u> </u></em><em><u>i.e </u></em><em><u>a </u></em><em><u>triangle</u></em><em><u> </u></em><em><u>which </u></em><em><u>have </u></em><em><u>all </u></em><em><u>it's</u></em><em><u> </u></em><em><u>side </u></em><em><u>equal.</u></em>
<em><u>To </u></em><em><u>Find </u></em><em><u>:</u></em>
<em><u>=</u></em><em><u>></u></em><em><u>The </u></em><em><u>value </u></em><em><u>of </u></em><em><u>(</u></em><em><u>2</u></em><em><u>x</u></em><em><u>)</u></em><em><u>°</u></em>
<em><u>-</u></em><em><u>-</u></em><em><u>-</u></em><em><u>-</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>-</u></em><em><u>-</u></em><em><u>-</u></em><em><u>-</u></em><em><u>❣️</u></em>
<h2>
<em><u>Solution</u></em><em><u> </u></em></h2>
<em><u>----_______----❣️</u></em>
<em><u>1</u></em><em><u>. </u></em><em>We </em><em>know</em><em> </em><em>that </em><em>the </em><em>sum </em><em>of </em><em>a </em><em>triangle</em><em> </em><em>is </em><em>1</em><em>8</em><em>0</em><em>°</em>
<em>2.We </em><em>also </em><em>know</em><em> </em><em>that </em><em>all </em><em>the </em><em>sides </em><em>of </em><em>a </em><em>triangle</em><em> </em><em>are </em><em>equal</em><em> </em><em>hence,</em><em> thier</em><em> </em><em>corresponding</em><em> </em><em>Angles </em><em>are </em><em>Equal</em><em> </em><em>too.</em>
<em>So.</em><em>.</em><em>.</em>
<em> </em><em><u>Each </u></em><em><u>angle </u></em><em><u>measures </u></em><em><u>6</u></em><em><u>0</u></em><em><u>°</u></em><em><u>. </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>(</u></em><em><u>.</u></em><em><u>1</u></em><em><u>)</u></em>
<em><u>3</u></em><em><u>.</u></em><em><u> </u></em><em>using(</em><em>1</em><em>)</em><em>,</em>
<em>We </em><em>can </em><em>find</em><em> the</em><em> </em><em>value</em><em> </em><em>of </em><em>x</em>
<h2>
<em>=</em><em>></em><em> </em><em>2</em><em>x</em><em>°</em><em> </em><em>=</em><em>6</em><em>0</em><em>°</em></h2><h2>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>x=</em><em> </em><em>6</em><em>0</em><em>/</em><em>2</em></h2><h2>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>x=</em><em> </em><em>3</em><em>0</em></h2>
Answer:
14
Step-by-step explanation:
im ur teacher what are u doing