This question is incomplete
Complete Question
Consider greenhouse A with floor dimensions w = 16 feet , l = 18 feet.
A concrete slab 4 inches deep will be poured for the floor of greenhouse A. How many cubic feet of concrete are needed for the floor?
Answer:
96 cubic feet
Step-by-step explanation:
The volume of the floor of the green house = Length × Width × Height
We convert the dimensions in feet to inches
1 foot = 12 inches
For width
1 foot = 12 inches
16 feet = x
Cross Multiply
x = 16 × 12 inches
x = 192 inches
For length
1 foot = 12 inches
18 feet = x
Cross Multiply
x = 18 × 12 inches
x = 216 inches
The height or depth = 4 inches deep
Hence,
Volume = 192 inches × 216 inches × 4 inches
= 165888 cubic inches
From cubic inches to cubic feet
1 cubic inches = 0.000578704 cubic foot
165888 cubic inches = x
Cross Multiply
x = 16588 × 0.000578704 cubic foot
x = 96 cubic feet
Therefore, 96 cubic feet of concrete is needed for the floor
Answer:
a yes udjwjwjwjwjwjwjwjwjw
yes men es chef
Answer:
1595 ft^2
Step-by-step explanation:
The answer is obtained by adding the areas of sectors of several circles.
1. Think of the rope being vertical going up from the corner where it is tied. It goes up along the 10-ft side. Now think of the length of the rope being a radius of a circle, rotate it counterclockwise until it is horizontal and is on top of the bottom 20-ft side. That area is 3/4 of a circle of radius 24.5 ft.
2. With the rope in this position, along the bottom 20-ft side, 4.5 ft of the rope stick out the right side of the barn. That amount if rope allows for a 1/4 circle of 4.5-ft radius on the right side of the barn.
3. With the rope in the position of 1. above, vertical and along the 10-ft left side, 14.5 ft of rope extend past the barn's 10-ft left wall. That extra 14.5 ft of rope are now the radius of a 1/4 circle along the upper 20-ft wall.
The area is the sum of the areas described above in numbers 1., 2., and 3.
total area = area 1 + area 2 + area 3
area of circle = (pi)r^2
total area = 3/4 * (pi)(24.5 ft)^2 + 1/4 * (pi)(4.5 ft)^2 + 1/4 * (pi)(14.5 ft)^2
total area = 1414.31 ft^2 + 15.90 ft^2 + 165.13 ft^2
total area = 1595.34 ft^2
La tabla relacionada con la pregunta se puede encontrar en la imagen adjunta a continuación:
Responder:
70%
Explicación paso a paso:
probabilidad de seleccionar aleatoriamente a un participante que haya obtenido entre 71 y 85 puntos:
Probabilidad = resultado requerido / Total de resultados posibles
Resultados posibles totales = Sumando la frecuencia para obtener el número total de estudiantes = (9 + 12 + 12 + 18 + 9) = 60 estudiantes
Resultado requerido:
Clase :
(71 - 75) = frecuencia = 12
(76 - 80) = frecuencia = 12
(81 - 85) = frecuencia = 18
Total = (12 + 12 + 18) = 42 = resultado requerido
Por tanto, P = 42/60 = 0,7 = (0,7 * 100%) = 70%
(8 x 320)^1/3
(2560)^1/3
(64*40)^1/3
64^1/3 *40^1/3
4 * (8^1/3) * 5^1/3
4 * 2 * 5^1/3
8 *5^1/3
None of your choices are written correctly