Answer:

Step-by-step explanation:
<u>Arithmetic Sequences</u>
The arithmetic sequences are identified because any term n is obtained by adding or subtracting a fixed number to the previous term. That number is called the common difference.
The equation to calculate the nth term of an arithmetic sequence is:

Where
an = nth term
a1 = first term
r = common difference
n = number of the term
We are given the first terms of a sequence:
-12, -28, -44,...
Find the common difference by subtracting consecutive terms:
r = -28 - (-12) = -16
r = -44 - (-28) = -16
The first term is a1 = -12. Now we calculate the term n=61:



-root 3*63x^2 is the answer you want
Those are the ranges for one tandard deviation below the mean and one standard deviation above the mean, and we know that 68% of the data falls in that range, so the probability that a randomly chosen worker makes that much is 68%
3/5
Thats if u devide 9 by 3 and 15 by 5
Answer:
x = 6
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
<u>Algebra I</u>
- Terms/Coefficients/Degrees
- Expand by FOIL (First Outside Inside Last)
- Factoring
- Multiple Roots
<u>Trigonometry</u>
[Right Triangles Only] Pythagorean Theorem: a² + b² = c²
- a is a leg
- b is another leg
- c is the hypotenuse
Step-by-step explanation:
<u>Step 1: Identify</u>
<em>a</em> = x + 3
<em>b</em> = x
<em>c</em> = √117
<u>Step 2: Solve for </u><em><u>x</u></em>
- Substitute [PT]: (x + 3)² + x² = (√117)²
- Expand [FOIL]: x² + 6x + 9 + x² = (√117)²
- Combine like terms: 2x² + 6x + 9 = (√117)²
- Exponents: 2x² + 6x + 9 = 117
- [SPE] Subtract 117 on both sides: 2x² + 6x - 108 = 0
- Factor out GCF: 2(x² + 3x - 54) = 0
- [DPE] Divide 2 on both sides: x² + 3x - 54 = 0
- Factor Quadratic: (x - 6)(x + 9) = 0
- Solve roots/solve <em>x</em>: x = -9, 6
Since we are dealing with positive values, we can disregard the negative root.
∴ x = 6