Answer: D
(0,-4) (12,6)
slope= 10/12
slope== 5/6
y=5/6x+b
-4=0+b
b=-4
the equation of the line is
y=5/6x-4
<u>Answer:</u>
-10,1,19
<u>Step-by-step explanation:</u>
<u></u>
x+y+z = 10 (Equation 1)
2y-x= 12 (Equation 2)
x-y+2z = 7 (Equation 3)
(Equation 2): -x = -2y+12
x = 2y-12 (Equation 4)
(Equation 1) - (Equation 3): 2y-z = 3
-z = -2y+3
z = 2y-3 (Equation 5)
Substitute (4) and (5) into (1)
x+y+z = 10
(2y-12)+y+(2y-3) = 10
5y-15 = 10
5y = 5
y=1
Substitute y=1 into (2)
2y-x= 12
2(1)-x= 12
2-x= 12
-x= 12-2
-x= 10
x= -10
Substitute y=1 and x=-10 into (1)
x+y+z = 10
-10+1+z = 10
z-9 = 10
z = 10+9
z = 19
Order: x = -10, y = 1, and z = 19
1975/1975+339+10
Wins/Total
1975/2324=0.8498
Convert to percent by moving decimal point up 2
Percent of wins: 84.98%
Answer:
Step-by-step explanation:
Hello!
X: Cholesterol level of a woman aged 30-39. (mg/dl)
This variable has an approximately normal distribution with mean μ= 190.14 mg/dl
1. You need to find the corresponding Z-value that corresponds to the top 9.3% of the distribution, i.e. is the value of the standard normal distribution that has above it 0.093 of the distribution and below it is 0.907, symbolically:
P(Z≥z₀)= 0.093
-*or*-
P(Z≤z₀)= 0.907
Since the Z-table shows accumulative probabilities P(Z<Z₁₋α) I'll work with the second expression:
P(Z≤z₀)= 0.907
Now all you have to do is look for the given probability in the body of the table and reach the margins to obtain the corresponding Z value. The first column gives you the integer and first decimal value and the first row gives you the second decimal value:
z₀= 1.323
2.
Using the Z value from 1., the mean Cholesterol level (μ= 190.14 mg/dl) and the Medical guideline that indicates that 9.3% of the women have levels above 240 mg/dl you can clear the standard deviation of the distribution from the Z-formula:
Z= (X- μ)/δ ~N(0;1)
Z= (X- μ)/δ
Z*δ= X- μ
δ=(X- μ)/Z
δ=(240-190.14)/1.323
δ= 37.687 ≅ 37.7 mg/dl
I hope it helps!