Answer:
(3 square root of 2 , 135°), (-3 square root of 2 , 315°)
Step-by-step explanation:
Hello!
We need to determine two pairs of polar coordinates for the point (3, -3) with 0°≤ θ < 360°.
We know that the polar coordinate system is a two-dimensional coordinate. The two dimensions are:
- The radial coordinate which is often denoted by r.
- The angular coordinate by θ.
So we need to find r and θ. So we know that:
(1)
x = rcos(θ) (2)
x = rsin(θ) (3)
From the statement we know that (x, y) = (3, -3).
Using the equation (1) we find that:

Using the equations (2) and (3) we find that:
3 = rcos(θ)
-3 = rsin(θ)
Solving the system of equations:
θ= -45
Then:
r = 3\sqrt{2}[/tex]
θ= -45 or 315
Notice that there are two feasible angles, they both have a tangent of -1. The X will take the positive value, and Y the negative one.
So, the solution is:
(3 square root of 2 , 135°), (-3 square root of 2 , 315°)
A= P(1 + r/n) ^nt
=8000(1+0.08/2)^8x2
=8000(1.04)^16
=$14983.85
An expression to represent a decimal between 1 and 10 multiplied by ten. basically to write larger numbers with less digits.
ex . 100 = 1 x 10^2
ex. 4321= 4.321 x 10^3
Answer:
B) (1/2, -8)
Step-by-step explanation:
(1, -6) and (0, -10)
Midpoint formula:
((x1+x2)/2, (y1+y2)/2)
Solving for x:
(x1+x2)/2
(1 + 0)/2
1/2
Solving for y:
(y1+y2)/2
(-6-10)/2
(-16)/2
-8
Answer:
x^2+7x+10
Step-by-step explanation:
multiply the first by first and first by second
multiply the second by first and second by second