Answer:
A
Step-by-step explanation:
I did the test and it is the only one that makes sense
Answer:
63 in.3 that's what I got so I hope it's right
Answer:
Step-by-step explanation:
Number of vertices
3
Variable constraints
a>0 and b>0
Diagonal lengths
(data not available)
Height
b
Area
A = (a b)/2
Centroid
x^_ = (a/3, b/3)
Mechanical properties:
Area moment of inertia about the x-axis
J_x invisible comma x = (a b^3)/12
Area moment of inertia about the y-axis
J_y invisible comma y = (a^3 b)/12
Polar moment of inertia
J_zz = 1/12 a b (a^2 + b^2)
Product moment of inertia
J_x invisible comma y = -1/24 a^2 b^2
Radii of gyration about coordinate axes
r_x = b/sqrt(6)
r_y = a/sqrt(6)
Distance properties:
Side lengths
a | sqrt(a^2 + b^2) | b
Hypotenuse
sqrt(a^2 + b^2)
Perimeter
p = sqrt(a^2 + b^2) + a + b
Inradius
r = 1/2 (-sqrt(a^2 + b^2) + a + b)
Circumradius
R = 1/2 sqrt(a^2 + b^2)
Generalized diameter
sqrt(a^2 + b^2)
Convexity coefficient
χ = 1
Mean triangle area
A^_ = (a b)/24
Answer:
Step-by-step explanation:bbb
Answer:
Moo
Step-by-step explanation:
On the surface, it seems easy. Can you think of the integers for x, y, and z so that x³+y³+z³=8? Sure. One answer is x = 1, y = -1, and z = 2. But what about the integers for x, y, and z so that x³+y³+z³=42?
That turned out to be much harder—as in, no one was able to solve for those integers for 65 years until a supercomputer finally came up with the solution to 42. (For the record: x = -80538738812075974, y = 80435758145817515, and z = 12602123297335631. Obviously.)