So, to find the solution to this problem, we will we using pretty much the same method we used in your previous question. First, let's find the area of the rectangle. The area of a rectangle is length x width. The length in this problem is 16 and the width is 3, and after multiplying these together, we have found 48 in^2 to be the area of the square. Next, we can find the area of the trapezoid. The area of a trapezoid is ((a+b)/2)h where a is the first base, b is the second base, and h is the height. In this problem, a=16, b=5, and h=10. So, all we have to do is plug these values into the area formula. ((16+5)/2)10 = (21/2)10 = 105. So, the area of the trapezoid is 105 in^2. Now after adding the two areas together (48in^2 and 105in^2), we have found the solution to be 153in^2. I hope this helped! :)
Answer:
The third one is the only one that is not a function.
Step-by-step explanation:
95% of red lights last between 2.5 and 3.5 minutes.
<u>Step-by-step explanation:</u>
In this case,
- The mean M is 3 and
- The standard deviation SD is given as 0.25
Assume the bell shaped graph of normal distribution,
The center of the graph is mean which is 3 minutes.
We move one space to the right side of mean ⇒ M + SD
⇒ 3+0.25 = 3.25 minutes.
Again we move one more space to the right of mean ⇒ M + 2SD
⇒ 3 + (0.25×2) = 3.5 minutes.
Similarly,
Move one space to the left side of mean ⇒ M - SD
⇒ 3-0.25 = 2.75 minutes.
Again we move one more space to the left of mean ⇒ M - 2SD
⇒ 3 - (0.25×2) =2.5 minutes.
The questions asks to approximately what percent of red lights last between 2.5 and 3.5 minutes.
Notice 2.5 and 3.5 fall within 2 standard deviations, and that 95% of the data is within 2 standard deviations. (Refer to bell-shaped graph)
Therefore, the percent of red lights that last between 2.5 and 3.5 minutes is 95%
We've hit on a case where a measure of center does not provide all the information spread or variability there is in month-to-month precipitation. based on how busy each month has been in the past, lets managers plan
The answer would be b.100 because its clearly not a right triangle