Answers:
- a) 15000 represents the starting amount
- b) The decay rate is 16%, which means the car loses 16% of its value each year.
- c) x is the number of years
- d) f(x) is the value of the car after x years have gone by
========================================================
Explanation:
We have the function f(x) = 15000(0.84)^x. If we plug in x = 0, then we get,
f(x) = 15000(0.84)^x
f(0) = 15000(0.84)^0
f(0) = 15000(1)
f(0) = 15000
In the third step, I used the idea that any nonzero value to the power of 0 is always 1. The rule is x^0 = 1 for any nonzero x.
So that's how we get the initial value of the car. The car started off at $15,000.
-------------
The growth or decay rate depends entirely on the base of the exponential, which is 0.84; compare it to 1+r and we see that 1+r = 0.84 solves to r = -0.16 which converts to -16%. The negative indicates the value is going down each year. So we have 16% decay or the value is going down 16% per year.
------------
The value of x is the number of years. In the first section, x = 0 represented year 0 or the starting year. If x = 1, then one full year has passed by. For x = 2, we have two full years pass by, and so on.
------------
The value of f(x) is the value of the car after x years have gone by. We found that f(x) = 15000 when x = 0. In other words, at the start the car is worth $15,000. Plugging in other x values leads to other f(x) values. For example, if x = 2, then you should find that f(x) = 10584. This means the car is worth $10,584 after two years.
A. PT and TQ are equal since they are both bisected by T. So, set them equal to each other you get the equation:
5x+3 =48
5x=45
x=9
Length of the rectangular patio = 12 1/2 feet
= 25/2 feet
Area of the rectangular patio = 103 1/8 square feet
= 825/8 square feet
Let us assume the width of the rectangular patio = x feet
Then
Area of the rectangular patio = Length * Width
825/8 = (25/2) * x
25x/2 = 825/8
25x = (825 * 2)/8 feet
25x = 825/4 feet
x = 825/(4 * 25) feet
= 33/4 feet
= 8 1/4 feet
So the width of the rectangular patio is 8 1/4 feet. I hope the procedure is clear enough for you to understand.
Answer:
39in.
Step-by-step explanation:
due to scale, cant be 15, as that would be the same length as other side
cant be 91 otherwise it wouldnt be similar if it had the same length as blue triangle which has 39 not 15 as the top side
Answer:
<em>The height of the bullding is 717 ft</em>
Step-by-step explanation:
<u>Right Triangles</u>
The trigonometric ratios (sine, cosine, tangent, etc.) are defined as relations between the triangle's side lengths.
The tangent ratio for an internal angle A is:

The image below shows the situation where Ms. M wanted to estimate the height of the Republic Plaza building in downtown Denver.
The angle A is given by his phone's app as A= 82° and the distance from her location and the building is 100 ft. The angle formed by the building and the ground is 90°, thus the tangent ratio must be satisfied. The distance h is the opposite leg to angle A and 100 ft is the adjacent leg, thus:

Solving for h:

Computing:
h = 711.5 ft
We must add the height of Ms, M's eyes. The height of the building is
711.5 ft + 5 ft = 716.5 ft
The height of the building is 717 ft