<span>social learning
</span>If your little sister watches you and tries to copy everything you do, she is exhibiting which type of learning?
NOT:
classical conditioning
insightful learning
<span>habituation</span>
Answer:
x^2 + y^2 + 16x + 6y + 9 = 0
Step-by-step explanation:
Using the formula for equation of a circle
(x - a)^2 + (y + b)^2 = r^2
(a, b) - the center
r - radius of the circle
Inserting the values given in the question
(-8,3) and r = 8
a - -8
b - 3
r - 8
[ x -(-8)]^2 + (y+3)^2 = 8^2
(x + 8)^2 + (y + 3)^2 = 8^2
Solving the brackets
( x + 8)(x + 8) + (y +3)(y+3) = 64
x^2 + 16x + 64 + y^2 + 6y + 9 = 64
Rearranging algebrally,.
x^2 + y^2 + 16x + 6y + 9+64 - 64 = 0
Bringing in 64, thereby changing the + sign to -
Therefore, the equation of the circle =
x^2 + y^2 + 16x + 6y + 9 = 0
Answer:
don't bjjjjjjjjj*jjjjjjjjjjj
Answer:
The answer is $31,722.
Step-by-step explanation:
10,000 x 1.08 = 10,800
Do this 14 more times, your answer times 1.08.
You end up with 31,721.6911418.
Rounded to the nearest dollar, that would be $31,722.
Answer:
- The general solution is

- The error in the approximations to y(0.2), y(0.6), and y(1):



Step-by-step explanation:
<em>Point a:</em>
The Euler's method states that:
where 
We have that
,
,
, 
- We need to find
for
, when
,
using the Euler's method.
So you need to:




- We need to find
for
, when
,
using the Euler's method.
So you need to:




The Euler's Method is detailed in the following table.
<em>Point b:</em>
To find the general solution of
you need to:
Rewrite in the form of a first order separable ODE:

Integrate each side:



We know the initial condition y(0) = 3, we are going to use it to find the value of 

So we have:

Solving for <em>y</em> we get:

<em>Point c:</em>
To compute the error in the approximations y(0.2), y(0.6), and y(1) you need to:
Find the values y(0.2), y(0.6), and y(1) using 



Next, where
are from the table.


