1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brilliant_brown [7]
3 years ago
11

Does Y= -2/3x + 3 & Y=2/3x + 2 have unlimited solutions?

Mathematics
1 answer:
notsponge [240]3 years ago
6 0

Answer:

x = 3/4

y = 2.5

Step-by-step explanation:

No there is just one.

Equate the ys

-2/3 x + 3 = 2/3 x + 2                        Add 2/3 x to both sides

3 = 2/3 x + 2/3x + 2                          Combine

3 = 4/3 x + 2                                     Subtract 2

3-2 = 4/3 x                                        Multiply by 3

1 * 3 = 4x                                          Divide by 4

3/4 = x

====================

y = 2/3 x + 2

y = 2/3 * 3/4 + 2

y = 6/12 + 2

y = 1/2 + 2

y = 2 1/2

y = 2.5

You might be interested in
Urgent please help..
Katyanochek1 [597]

Answer:

18π

Step-by-step explanation:

Lateral Surface Area = 2πrh

Plug in the numbers into the equation.

but leave the pi

6 0
3 years ago
Plz help I have a geometry exam soon!!!!! :(
Pachacha [2.7K]

Answer:

a = 93°, b = 120°, c = 150°

Step-by-step explanation:

b + 36 = 78 × 2 => b + 36 = 156 => b = 120°

87 × 2 - b = the minor arc between a and 78

=> 174 - 120 = 54

54 + b + 36 + c = 360

=> 54 + 120 + 36 + c = 360

=> c = 150°

(c + 36) ÷ 2 = a

=> (150 + 36) ÷ 2 = a

=> a = 93°

5 0
3 years ago
Calculate s f(x, y, z) ds for the given surface and function. g(r, θ) = (r cos θ, r sin θ, θ), 0 ≤ r ≤ 4, 0 ≤ θ ≤ 2π; f(x, y, z)
Triss [41]

g(r,\theta)=(r\cos\theta,r\sin\theta,\theta)\implies\begin{cases}g_r=(\cos\theta,\sin\theta,0)\\g_\theta=(-r\sin\theta,r\cos\theta,1)\end{cases}

The surface element is

\mathrm dS=\|g_r\times g_\theta\|\,\mathrm dr\,\mathrm d\theta=\sqrt{1+r^2}\,\mathrm dr\,\mathrm d\theta

and the integral is

\displaystyle\iint_Sx^2+y^2\,\mathrm dS=\int_0^{2\pi}\int_0^4((r\cos\theta)^2+(r\sin\theta)^2)\sqrt{1+r^2}\,\mathrm dr\,\mathrm d\theta

=\displaystyle2\pi\int_0^4r^2\sqrt{1+r^2}\,\mathrm dr=\frac\pi4(132\sqrt{17}-\sinh^{-1}4)

###

To compute the last integral, you can integrate by parts:

u=r\implies\mathrm du=\mathrm dr

\mathrm dv=r\sqrt{1+r^2}\,\mathrm dr\implies v=\dfrac13(1+r^2)^{3/2}

\displaystyle\int_0^4r^2\sqrt{1+r^2}\,\mathrm dr=\frac r3(1+r^2)^{3/2}\bigg|_0^4-\frac13\int_0^4(1+r^2)^{3/2}\,\mathrm dr

For this integral, consider a substitution of

r=\sinh s\implies\mathrm dr=\cosh s\,\mathrm ds

\displaystyle\int_0^4(1+r^2)^{3/2}\,\mathrm dr=\int_0^{\sinh^{-1}4}(1+\sinh^2s)^{3/2}\cosh s\,\mathrm ds

\displaystyle=\int_0^{\sinh^{-1}4}\cosh^4s\,\mathrm ds

=\displaystyle\frac18\int_0^{\sinh^{-1}4}(3+4\cosh2s+\cosh4s)\,\mathrm ds

and the result above follows.

4 0
4 years ago
How do you write 133x99?
swat32
133 x 99 = 13167
100% correct

8 0
3 years ago
What is 6/8/ divided by 5/7
ziro4ka [17]

Answer:

6/8 divided by 5/7 is 1.05/ 1 1/20

8 0
3 years ago
Read 2 more answers
Other questions:
  • Números comprendidos entre -4 y -3
    6·1 answer
  • Please help me out, i will mark your answer (if it’s correct) as a brainiest:)
    5·1 answer
  • Monkey drill butthole big eye wasp sting ouchie oof
    9·2 answers
  • Convert this quadratic to vertex form f(x)=(x-h)^2+k by completing the square. <br> 3x^2-6x+6=0
    8·1 answer
  • Pls help me I don't understand!!!!!!!!
    12·2 answers
  • Help me pls! PLS PLS PLS I NEED IT<br><br>20 points<br>options are x, x^9, x^4, and x^6
    9·1 answer
  • 88 x 88/22 x 11 x 11​
    8·2 answers
  • Pls help me i need help
    12·2 answers
  • Please answer this first to answer CORRECTLY, gets brainliest.
    9·2 answers
  • Which model represents the factors of 4x^2-9
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!