1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UNO [17]
3 years ago
14

PLEASE HELP NEED HELP NOW EASY QUESTION WILL AWARD BRAINLIST

Mathematics
1 answer:
asambeis [7]3 years ago
4 0

Answer:

A,D

Step-by-step explanation:

pls give me brainliest

You might be interested in
Shade the model to show the decimal 0.542
wel
There is no model for us to shade in
7 0
3 years ago
Read 2 more answers
Which expression is equivalent to (16 x Superscript 8 Baseline y Superscript negative 12 Baseline) Superscript one-half?.
loris [4]

To solve the problem we must know the Basic Rules of Exponentiation.

<h2>Basic Rules of Exponentiation</h2>
  • x^ax^b = x^{(a+b)}
  • \dfrac{x^a}{x^b} = x^{(a-b)}
  • (a^a)^b =x^{(a\times b)}
  • (xy)^a = x^ay^a
  • x^{\frac{3}{4}} = \sqrt[4]{x^3}= (\sqrt[3]{x})^4

The solution of the expression is \dfrac{4x^4}{y^6}.

<h2>Explanation</h2>

Given to us

  • (16x^8y^{12})^{\frac{1}{2}}

Solution

We know that 16 can be reduced to 2^4,

=(2^4x^8y^{12})^{\frac{1}{2}}

Using identity (xy)^a = x^ay^a,

=(2^4)^{\frac{1}{2}}(x^8)^{\frac{1}{2}}(y^{12})^{\frac{1}{2}}

Using identity (a^a)^b =x^{(a\times b)},

=(2^{4\times \frac{1}{2}})\ (x^{8\times\frac{1}{2}})\ (y^{12\times{\frac{1}{2}}})

Solving further

=2^2x^4y^{-6}

Using identity \dfrac{x^a}{x^b} = x^{(a-b)},

=\dfrac{2^2x^4}{y^6}

=\dfrac{4x^4}{y^6}

Hence, the solution of the expression is \dfrac{4x^4}{y^6}.

Learn more about Exponentiation:

brainly.com/question/2193820

8 0
3 years ago
What is the expression of the product of w and 8
nasty-shy [4]

Answer:

The expression would be 8w

6 0
3 years ago
Plz help asap i will mark you brainly
Alchen [17]

Answer:

4 for.10

2 for 9

2 for 9

+$+$+$+$_+"++_+_+_

5 0
3 years ago
Read 2 more answers
The equation sin (25 degree) equals StartFraction 9 Over c EndFraction can be used to find the length of Line segment A B.
Bumek [7]

Answer:

AB = 21.3

Step-by-step explanation:

Given

\sin(25) = \frac{9}{c}

See attachment

Required

Find AB

We have:

\sin(25) = \frac{9}{c}

Make c the subject

c = \frac{9}{\sin(25)}

c = 21.3

From the attached triangle;

AB = c = 21.3

Hence:

AB = 21.3

8 0
3 years ago
Other questions:
  • 4. Compare/contrast the data sets below. Which data set has a range of 9, a mean of
    9·1 answer
  • Fritz attended then practice 56 of an hour. Then he went home and practice for 2/5 as long as band practice. How many minutes di
    14·1 answer
  • How many sixths are there in 3 1/3
    11·1 answer
  • How to make an improper fraction into a proper fraction?
    11·1 answer
  • Ms. Burns needs 6 cups of cream to make ice cream. Cream is sold in pints. How many pints of cream does she need to make the ice
    9·2 answers
  • PLEASE HELP ME MATCH THEM!! I’m in need please. <br><br> Match each value with its formula ABC.
    6·2 answers
  • Graph the line: Y=-4x+1
    10·1 answer
  • In 2010, there were approximately 75,000 songs released all year.
    14·2 answers
  • Find three consecutive even integers such that the product of the first and the second is 8
    13·1 answer
  • Which of the following equations are true for the number 5? (Select all that apply)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!