Answer:
this what i got
Step-by-step explanation:
1. x = 5.5
2. 14.2
3. 3.6
Answer: The average rate of change is 6.First, plug in each value of <em>t</em> into the function, v(t) to find there coordinate pairs.
v(2) = (2)^2 - (2) + 10
v(2) = 4 + 8
v(2) = 12
v(5) = (5)^2 - (5) + 10
v(5) = 25 + 5
v(5) = 30
You can write these values as coordinate pairs, like so: (2, 12) and (5, 30).
The formula for the average rate of change is

. When you plug in the values from this particular case, the average rate of change formula becomes

, or

.
Looking at the equation, you can solve for the average rate of change between t = 2 and t = 5, which equals
6.
Answer:
.
Step-by-step explanation: Given radical expression
.
According to the product property of roots.
![\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{a \times b}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%7D%20%5Ctimes%20%5Csqrt%5Bn%5D%7Bb%7D%20%3D%20%5Csqrt%5Bn%5D%7Ba%20%5Ctimes%20b%7D)
On applying above rule, we get
![\sqrt[3]{5x} \times \sqrt[3]{25x^2} = \sqrt[3]{5x \times 25x^2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B5x%7D%20%5Ctimes%20%5Csqrt%5B3%5D%7B25x%5E2%7D%20%3D%20%5Csqrt%5B3%5D%7B5x%20%5Ctimes%2025x%5E2%7D)
5 × 25 = 125 and

Therefore,
![\sqrt[3]{5x \times 25x^2}= \sqrt[3]{125x^3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B5x%20%5Ctimes%2025x%5E2%7D%3D%20%5Csqrt%5B3%5D%7B125x%5E3%7D)
<h3>So, the correct option would be second option
![\sqrt[3]{125x^3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B125x%5E3%7D)
.</h3>
<span>–vp + 40 < 95
-vp < 55
-vp < 55 / p
v > 55 / p</span>
Answer:
If x is the distance from centre fo the circle, with radius 25cm, to its intersection point with the common chord, x²+24²=25² =>x=7cm.
Distance from this intersecting point to the centre of the other circle=39–7=32cm
Ratio of the sides of the right triangle thus formed is 24:32=3:4. Since 3:4:5 is the basic pythagorean triplet, the radius of the other circle=5*24/3=40cm.
Aliter: radius of the other circle=√32²+24²= 40cm.
<h2><em>please</em><em> </em><em>mark</em><em> me</em><em> as</em><em> brainalist</em></h2>