Answer:
d.0.48
Explanation:
When a population is in Hardy Weinberg equilibrium the <u>genotypic </u>frequencies are:
freq (AA) = p²
freq (Aa) = 2pq
freq (aa) = q²
<em>p</em> is the frequency of the dominant <em>A</em> allele and <em>q</em> is the frequency of the recessive <em>a</em> allele.
In this population of 100 individuals, 84 martians have the dominant phenotype and 16 have the recessive phenotype.
Therefore:
q²=16/100
q² = 0.16
q=√0.16
q = 0.4
And p+q=1, so:
p = 1 - q
p = 1-0.4
p = 0.6
The frequency of heterozygotes is:
freq (Aa) = 2pq = 2 × 0.4 × 0.6
freq (Aa) = 0.48
so if you look up things that can cause an asthma attack it will also show that viruses and bacteria are a cause. with asthma you lungs could already be inflamed as well as your air way wich makes it harder to breath. when you have c-19 it will inflame your lungs even more so it makes it even harder to breath given an asthma attack. more asthma attack now are probably caused by c-19 because it is all over the place and the percent of asthma attack by virus has dramatically increased.
<span>Plants without vascular system are non-vascular plants. Non-vascular plants have no xylem and no phloem.
Non-vascular plants include algae, bryophytes, moss grass, liverworts and hornworts.
The answer to this item is moss. Moss is a non-vascular plant which has no seeds and no flowers. It uses spores in reproduction.</span>
Answer:
d
Explanation:
When considering the frequency of the potential alleles of a gene in a population, the total must add up to 1. Think of it like percentages. an allele frequency of 0.3 means 30% of the population carry it (out of a possible 100%).
We know that the frequency of c1 is 0.3. Lets take each option and see if it can be true
a) cannot be less than 0.3. - false. It <em>could </em>be less than 0.3. For example, it could be 0.1, meaning the frequency of allele c3 would be 0.6 (because 0.3 + 0.1 + 0.6 = 1)
b) cannot be greater than 0.3. - false. It <em>could </em>be greater than 0.3. For example, it could be 0.5, meaning the frequency of allele c3 would have to be 0.2 (because 0.3 + 0.5 + 0.2 = 1)
c) is 0.7. - false. It <em>can't </em>be 0.7, because that would mean that the frequency of c3 is 0. (0.7 + 0.3 = 1)
d) cannot be greater than 0.7. - true. It <em>cannot </em>be greater than 0.7, because that would mean that the frequency of c3 is 0. (0.7 + 0.3 = 1)