Answer:
{x = 2 , y = -2
Step-by-step explanation:
Solve the following system:
{y = 4 - 3 x | (equation 1)
{y = x/2 - 3 | (equation 2)
Express the system in standard form:
{3 x + y = 4 | (equation 1)
{-x/2 + y = -3 | (equation 2)
Add 1/6 × (equation 1) to equation 2:
{3 x + y = 4 | (equation 1)
{0 x+(7 y)/6 = (-7)/3 | (equation 2)
Multiply equation 2 by 6/7:
{3 x + y = 4 | (equation 1)
{0 x+y = -2 | (equation 2)
Subtract equation 2 from equation 1:
{3 x+0 y = 6 | (equation 1)
{0 x+y = -2 | (equation 2)
Divide equation 1 by 3:
{x+0 y = 2 | (equation 1)
{0 x+y = -2 | (equation 2)
Collect results:
Answer: {x = 2 , y = -2
Answer:
1/2x
Step-by-step explanation:

To solve this type of fraction you need to times the inverse of the bottom fractal, both over and under. In this case the inverse of 1/2 is 2/1
Answer:
y
=
4
(
1
2
)
x
Explanation:
An exponential function is in the general form
y
=
a
(
b
)
x
We know the points
(
−
1
,
8
)
and
(
1
,
2
)
, so the following are true:
8
=
a
(
b
−
1
)
=
a
b
2
=
a
(
b
1
)
=
a
b
Multiply both sides of the first equation by
b
to find that
8
b
=
a
Plug this into the second equation and solve for
b
:
2
=
(
8
b
)
b
2
=
8
b
2
b
2
=
1
4
b
=
±
1
2
Two equations seem to be possible here. Plug both values of
b
into the either equation to find
a
. I'll use the second equation for simpler algebra.
If
b
=
1
2
:
2
=
a
(
1
2
)
a
=
4
Giving us the equation:
y
=
4
(
1
2
)
x
If
b
=
−
1
2
:
2
=
a
(
−
1
2
)
a
=
−
4
Giving us the equation:
y
=
−
4
(
−
1
2
)
x
However! In an exponential function,
b
>
0
, otherwise many issues arise when trying to graph the function.
The only valid function is
y
=
4
(
1
2
)
x
The answer is 45 when you substitute all the variables in