Answer:
D
Step-by-step explanation:
I think I'm not sure about that
Answer:
25 rides
Step-by-step explanation:
has $28.50
15.75 + 0.50r
28.50
Subtract 15.75
0.50r
12.75
r
25.5
you can't have half rides, so 25 rides
1) Road Trip: Let’s say two friends are meeting at a playground. Mary is already at the park but her friend Bob needs to get there taking the shortest path possible. Bob has two way he can go - he can follow the roads getting to the park - first heading south 3 miles, then heading west four miles. The total distance covered following the roads will be 7 miles. The other way he can get there is by cutting through some open fields and walk directly to the park. If we apply Pythagoras's theorem to calculate the distance you will get:
(3)<span>2 </span>+ (4)2 =
9 + 16 = C2
√25 = C
5 Miles. = C
Walking through the field will be 2 miles shorter than walking along the roads. .
2) Painting on a Wall: Painters use ladders to paint on high buildings and often use the help of Pythagoras' theorem to complete their work. The painter needs to determine how tall a ladder needs to be in order to safely place the base away from the wall so it won't tip over. In this case the ladder itself will be the hypotenuse. Take for example a painter who has to paint a wall which is about 3 m high. The painter has to put the base of the ladder 2 m away from the wall to ensure it won't tip. What will be the length of the ladder required by the painter to complete his work? You can calculate it using Pythagoras' theorem:
(5)<span>2 </span>+ (2)2 =
25 + 4 = C2
√100 = C
5.3 m. = C
Thus, the painter will need a ladder about 5 meters high.
3) Buying a Suitcase: Mr. Harry wants to purchase a suitcase. The shopkeeper tells Mr. Harry that he has a 30 inch of suitcase available at present and the height of the suitcase is 18 inches. Calculate the actual length of the suitcase for Mr. Harry using Pythagoras' theorem. It is calculated this way:
(18)<span>2 </span>+ (b)2 = (30)2
324 + b2 = 900
B2 = 900 – 324
b= √576
= 24 inches
Question 11a)
We are given side BC equals to side CE and angle CBA equals to angle CED
We also know that angle ACB equals to angle ECD are equal (opposite angles properties)
We have enough information to deduce that triangle ABC and triangle CDE are equal by postulate Angle-Side-Angle (ASA)
---------------------------------------------------------------------------------------------------------------
Question 11b)
We are given side AB equal to side ED, side BC equals to side EF, and side AC equals to side DF
We have enough information to deduce that triangle ABC and triangle DEF congruent by postulate Side-Side-Side (SSS)
----------------------------------------------------------------------------------------------------------------
Question 11c)
We are given side AC equals to side DF, angle ABC equals to angle DEF, and angle BAC equals to angle EDF
We have enough information to deduce that triangle ABC congruent to triangle DEF by postulate Angle-Side-Angle (ASA)
-----------------------------------------------------------------------------------------------------------------
Question 11d)
We do not have enough information to tell whether this shape congruent or not