Answer: A: 6
B: 4
C: 2
Step-by-step explanation:
Answer:
i just took the test, so its b. 84
i dont know hwy
Answer:
lateral area = 2320 m²
Step-by-step explanation:
The question wants us to calculate the lateral area of a square base pyramid. The square base pyramid has a side of 40 meters.The height is 21 meters.
Half of the square base is 40/2 = 20 meters . With the height it forms a right angle triangle. The hypotenuse side is the slant height of the pyramid.
Using Pythagoras's theorem
c² = a² + b²
c² = 20² + 21²
c² = 400 + 441
c² = 841
square root both sides
c = √841
c = 29 meters
The slant height of the pyramid is 29 meters.
The pyramid has four sided triangle. The lateral area is 4 multiply by the area of one triangle.
area of triangle = 1/2 × base × height
base = 40 meters
height = 29 meters
area = 1/2 × 40 × 29
area = 580
area of one triangle = 580 m²
Lateral area = 4(580)
lateral area = 2320 m²
Answer:
csc
Step-by-step explanation:
Answer:

Step-by-step explanation:
Let
, we proceed to transform the expression into an equivalent form of sines and cosines by means of the following trigonometrical identity:
(1)
(2)
Now we perform the operations: 



(3)
By the quadratic formula, we find the following solutions:
and 
Since sine is a bounded function between -1 and 1, the only solution that is mathematically reasonable is:

By means of inverse trigonometrical function, we get the value associate of the function in sexagesimal degrees:

Then, the values of the cosine associated with that angle is:

Now, we have that
, we proceed to transform the expression into an equivalent form with sines and cosines. The following trignometrical identities are used:
(4)
(5)




If we know that
and
, then the value of the function is:

