1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
9

Consider the series ∑n=1∞5n2+n.

Mathematics
2 answers:
MAXImum [283]3 years ago
7 0

(a) Decompose the summand into partial fractions:

\dfrac5{n^2+n} = \dfrac5{n(n+1)} = \dfrac an+\dfrac b{n+1}

\implies 5=a(n+1)+bn=(a+b)n+a

\implies a+b=0\text{ and }a=5 \implies b=-5

\implies\displaystyle\sum_{n=1}^\infty\frac5{n^2+n} = 5\sum_{n=1}^\infty\left(\frac1n-\frac1{n+1}\right)

The <em>n</em>-th partial sum for the series is

S_n = 5\displaystyle\sum_{k=1}^n\left(\frac1k-\frac1{k+1}\right)

which can be simplified significantly by examinging consective terms in the sum:

\displaystyle S_n = 5\left(1-\frac12\right) + 5\left(\frac12-\frac13\right) + 5\left(\frac13-\frac14\right) + \cdots + 5\left(\frac1{n-1}-\frac1n\right) + 5\left(\frac1n-\frac1{n+1}\right)

\implies S_n = \boxed{5\left(1-\dfrac1{n+1}\right)}

(b) Using the result of (a), you then get

\displaystyle\sum_{n=1}^\infty\frac5{n^2+n} = \lim_{n\to\infty}\boxed{5\left(1-\frac1{n+1}\right)} = \boxed{5}

(c) As shown in (a), the partial sum is simplified because of the reasons given in options A and D, and the result of (b) says that B is also correct.

alexandr402 [8]3 years ago
3 0

Answer:

Part a.  \displaystyle S_n = 5 - \frac{5}{n + 1}

Part b.  \displaystyle  \lim_{n \to \infty} (5 - \frac{5}{n + 1}) = 5

Part c. A, B, and D

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Pre-Calculus</u>

  • Partial Fraction Decomposition

<u>Calculus</u>

Limits

  • Limit Rule [Variable Direct Substitution]:                                                    \displaystyle \lim_{x \to c} x = c
  • Limit Property [Addition/Subtraction]:                                                         \displaystyle \lim_{x \to c} [f(x) \pm g(x)] =  \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)

Sequences

Series

  • Definition of a convergent or divergent series

Telescoping Series:                                                                                             \displaystyle \sum^\infty_{n = 1} (b_n - b_{n + 1}) = (b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + ... + (b_n - b_{n + 1}) + ...

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n}

<u>Step 2: Rewrite Sum</u>

  1. Factor:                                                                                                           \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \sum^\infty_{n = 1} \frac{5}{n(n + 1)}
  2. Break up [Partial Fraction Decomposition]:                                                 \displaystyle \frac{5}{n(n + 1)} = \frac{A}{n} + \frac{B}{n + 1}
  3. Simplify [Common Denominator]:                                                                 \displaystyle 5 = A(n + 1) + Bn
  4. [Decomp] Substitute in <em>n</em> = 0:                                                                       \displaystyle 5 = A(0 + 1) + B(0)
  5. Simplify:                                                                                                         \displaystyle 5 = A
  6. [Decomp] Substitute in <em>n</em> = -1:                                                                       \displaystyle 5 = A(-1 + 1) + B(-1)
  7. Simplify:                                                                                                         \displaystyle 5 = -B
  8. Solve:                                                                                                             \displaystyle B = -5
  9. [Decomp] Substitute in variables:                                                                 \displaystyle \frac{5}{n(n + 1)} = \frac{5}{n} + \frac{-5}{n + 1}
  10. Simplify:                                                                                                         \displaystyle \frac{5}{n(n + 1)} = \frac{5}{n} - \frac{5}{n + 1}
  11. Substitute in decomp [Sum]:                                                                         \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \sum^\infty_{n = 1} \bigg( \frac{5}{n} - \frac{5}{n + 1} \bigg)

<u>Step 3: Find Sum</u>

  1. Find Sₙ terms:                                                                                                    \displaystyle \sum^\infty_{n = 1} \bigg( \frac{5}{n} - \frac{5}{n + 1} \bigg) = (5 - \frac{5}{2}) + (\frac{5}{2} - \frac{5}{3}) + (\frac{5}{3} - \frac{5}{4}) + (\frac{5}{4} - 1) + ... + ( \frac{5}{n} - \frac{5}{n + 1}) + ...
  2. Find general Sₙ formula:                                                                               \displaystyle S_n = 5 - \frac{5}{n + 1}
  3. Find Sum [Take limit]:                                                                                   \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \lim_{n \to \infty} S_n
  4. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = 5 + 0
  5. Simplify:                                                                                                         \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = 5

∴ the sum converges by the Telescoping Series.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Convergence Tests (BC Only)

Book: College Calculus 10e

You might be interested in
Please help! Put answers for the green boxes. Thanks!<br><br> -ASIAX
irinina [24]
In order to get the results shown, the calculations must be done incorrectly. Ordinarily, instructions to round to a particular precision should be applied only to the final result(s). Here, you are expected to round every intermediate result. (This is generally considered to be WRONG!)
\sum{X}=1735\\n=4\\\overline{X}=mean=\frac{1735}{4}=433.8

The numbers in the column (X-\overline{X})^{2} are simply the squares of the numbers in the column to its left. Round the squares to tenths. Their sum should be the value indicated in the bottom row.

The standard deviation is the square root of the variance,
  √(99667.2) ≈ 315.7
5 0
3 years ago
Please help! It would be appreciated ! :)
Katarina [22]

Step-by-step explanation:

(x-9)²

= (x-9)(x-9)

= x²-9x-9x+81

= x²-18x+81

5 0
3 years ago
Probability question, which I am stuck on!
son4ous [18]

Answer:

land on 3: 36 times

land on 4: 63 times

Step-by-step explanation:

A biased dice is the opposite of a fair dice.

A fair dice has the same probability of landing any of the six numbers: 1/6

The biased dice has different probabilities for its results.

To solve this question, first we need to find the probability of landing a 3.

The sum of all probabilities need to be 1, so:

0.13 + 0.05 + p(3) + 0.21 + 0.19 + 0.3 = 1

p(3) = 1 - 0.88 = 0.12

If we roll the dice 300 times, the expected number of times the dice will land:

on 3: 300 * p(3) = 300 * 0.12 = 36 times

on 4: 300 * p(4) = 300 * 0.21 = 63 times

7 0
3 years ago
Parabolas in geometry. i need help please
natali 33 [55]

Answer:

OPtion B

Step by step explanation:

Lets plug in a random value for x.

Lets say 5 is x

-8(-5-5)=(y+1)^2

5-5 = 0

-8(0) = 0

0 = (y+1)^2

Square root of both sides

0 = y+1

subtract one from both sides

-1 = y

that means the x is 5 and the y is -1. Option B illustrates exactly that!

7 0
3 years ago
Which set of ordered pairs is not a function?
USPshnik [31]
The correct answer is B
3 0
3 years ago
Other questions:
  • Algebraic expression that best describes the sequence 2,4,8,16,32,...?
    10·2 answers
  • A recipe that makes 8 jumbo blueberry muffins calls for 1 1/2 teaspoons of baking powder how much making baking powder is needed
    5·2 answers
  • С<br> 3х +6<br> 2х + 4<br> D<br> B<br> E<br> О 24<br> 32<br> Оооо<br> 34
    15·1 answer
  • : The average student college loan rate is 4%. You borrowed $18,000 per year for 4 years for tuition, room, &amp; board. If the
    5·1 answer
  • Work out 97 % of £ 970.92 Give your answer rounded to 2 DP.
    14·1 answer
  • FIND THE CIRCUMFERENCE OF CIRCLE A! (no outside links or ill report you)
    10·1 answer
  • kendra biked 10 kilometers on monday. she biked twice as many kilometers on tuesday. how many total meters did she bike?
    12·1 answer
  • 3 2/3 + 2 3/5 + x = 8
    9·1 answer
  • The triangle and rectangle have the same perimeter.find the value of x.
    14·1 answer
  • By factoring, identify the zeros of the quadratic function f (x) = x²-9x-22
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!