1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
2 years ago
9

Consider the series ∑n=1∞5n2+n.

Mathematics
2 answers:
MAXImum [283]2 years ago
7 0

(a) Decompose the summand into partial fractions:

\dfrac5{n^2+n} = \dfrac5{n(n+1)} = \dfrac an+\dfrac b{n+1}

\implies 5=a(n+1)+bn=(a+b)n+a

\implies a+b=0\text{ and }a=5 \implies b=-5

\implies\displaystyle\sum_{n=1}^\infty\frac5{n^2+n} = 5\sum_{n=1}^\infty\left(\frac1n-\frac1{n+1}\right)

The <em>n</em>-th partial sum for the series is

S_n = 5\displaystyle\sum_{k=1}^n\left(\frac1k-\frac1{k+1}\right)

which can be simplified significantly by examinging consective terms in the sum:

\displaystyle S_n = 5\left(1-\frac12\right) + 5\left(\frac12-\frac13\right) + 5\left(\frac13-\frac14\right) + \cdots + 5\left(\frac1{n-1}-\frac1n\right) + 5\left(\frac1n-\frac1{n+1}\right)

\implies S_n = \boxed{5\left(1-\dfrac1{n+1}\right)}

(b) Using the result of (a), you then get

\displaystyle\sum_{n=1}^\infty\frac5{n^2+n} = \lim_{n\to\infty}\boxed{5\left(1-\frac1{n+1}\right)} = \boxed{5}

(c) As shown in (a), the partial sum is simplified because of the reasons given in options A and D, and the result of (b) says that B is also correct.

alexandr402 [8]2 years ago
3 0

Answer:

Part a.  \displaystyle S_n = 5 - \frac{5}{n + 1}

Part b.  \displaystyle  \lim_{n \to \infty} (5 - \frac{5}{n + 1}) = 5

Part c. A, B, and D

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Pre-Calculus</u>

  • Partial Fraction Decomposition

<u>Calculus</u>

Limits

  • Limit Rule [Variable Direct Substitution]:                                                    \displaystyle \lim_{x \to c} x = c
  • Limit Property [Addition/Subtraction]:                                                         \displaystyle \lim_{x \to c} [f(x) \pm g(x)] =  \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)

Sequences

Series

  • Definition of a convergent or divergent series

Telescoping Series:                                                                                             \displaystyle \sum^\infty_{n = 1} (b_n - b_{n + 1}) = (b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + ... + (b_n - b_{n + 1}) + ...

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n}

<u>Step 2: Rewrite Sum</u>

  1. Factor:                                                                                                           \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \sum^\infty_{n = 1} \frac{5}{n(n + 1)}
  2. Break up [Partial Fraction Decomposition]:                                                 \displaystyle \frac{5}{n(n + 1)} = \frac{A}{n} + \frac{B}{n + 1}
  3. Simplify [Common Denominator]:                                                                 \displaystyle 5 = A(n + 1) + Bn
  4. [Decomp] Substitute in <em>n</em> = 0:                                                                       \displaystyle 5 = A(0 + 1) + B(0)
  5. Simplify:                                                                                                         \displaystyle 5 = A
  6. [Decomp] Substitute in <em>n</em> = -1:                                                                       \displaystyle 5 = A(-1 + 1) + B(-1)
  7. Simplify:                                                                                                         \displaystyle 5 = -B
  8. Solve:                                                                                                             \displaystyle B = -5
  9. [Decomp] Substitute in variables:                                                                 \displaystyle \frac{5}{n(n + 1)} = \frac{5}{n} + \frac{-5}{n + 1}
  10. Simplify:                                                                                                         \displaystyle \frac{5}{n(n + 1)} = \frac{5}{n} - \frac{5}{n + 1}
  11. Substitute in decomp [Sum]:                                                                         \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \sum^\infty_{n = 1} \bigg( \frac{5}{n} - \frac{5}{n + 1} \bigg)

<u>Step 3: Find Sum</u>

  1. Find Sₙ terms:                                                                                                    \displaystyle \sum^\infty_{n = 1} \bigg( \frac{5}{n} - \frac{5}{n + 1} \bigg) = (5 - \frac{5}{2}) + (\frac{5}{2} - \frac{5}{3}) + (\frac{5}{3} - \frac{5}{4}) + (\frac{5}{4} - 1) + ... + ( \frac{5}{n} - \frac{5}{n + 1}) + ...
  2. Find general Sₙ formula:                                                                               \displaystyle S_n = 5 - \frac{5}{n + 1}
  3. Find Sum [Take limit]:                                                                                   \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \lim_{n \to \infty} S_n
  4. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = 5 + 0
  5. Simplify:                                                                                                         \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = 5

∴ the sum converges by the Telescoping Series.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Convergence Tests (BC Only)

Book: College Calculus 10e

You might be interested in
How do I solve this
solniwko [45]
There is your answer

3 0
3 years ago
Sarah earns $3.25 an hour stuffing envelopes. Write a rule to describe how the amount of money, m, earned is a function of the n
DENIUS [597]
Answer is 3.25h = m
That’s because Sarah’s earning 3.25 per hour so if you want to figure out how much money she’s making you can just substitute your value for h. Pls mark brainliest if possible, have a nice day
3 0
2 years ago
Can someone please help me with this question? I don't know how? What is the volume of a rectangular prism with a length of 2x –
lesantik [10]
Volume is legnth times widht times height
lenght=2x-1
width=x-2
height=x+1
multiply all together
use mass distributive property
distributive=a(b+c)=ab+ac so extending that
(a+c)(c+c)=(a+b)(c)+(a+b)(d) then keep distributing so
(2x-1)(x-2)(x+1)
do each one seperately
do the first two first and put the other one (x+1) to the side for later
(2x-1)(x-2)=(2x-1)(x)+(2x-1)(-2)=(2x^2-x)+(-4x+2)=2x^2-5x+2
then do the other one
(x+1)(2x^2-5x+2)=(x)(2x^2-5x+2)+(1)(2x^2-5x+2)=(2x^3-5x^2+2x)+(2x^2-5x+2)=2x^3-3x^2-3x+2

the lasst form is 2x^3-3x^2-3x+2





3 0
3 years ago
omar is born weighing 8 pounds, 3 ounces. The doctor says he should gain about 5 ounces each week for the next 4 weeks. How much
user100 [1]
He would be 9 pounds 7 ounces
3 0
3 years ago
A scientist makes a graph of temperature versus time. Temperature will be plotted on the ______ axis.
trapecia [35]
Temperature will be plotted on the y-axis
3 0
2 years ago
Read 2 more answers
Other questions:
  • 15. Scott and Tara were asked to find the
    15·1 answer
  • 8x-6 greater than 18
    9·1 answer
  • What is the improper fraction of 7/7
    9·2 answers
  • (Isosceles Triangle) find x
    8·1 answer
  • What is the answer to 6/3 +10/4
    8·2 answers
  • I need help answering
    14·1 answer
  • Three cards are drawn sequentially from a shuffled deck without replacement. What is the approximate probability all three drawn
    5·1 answer
  • Help please<br> Correct = brainliest
    15·1 answer
  • Whitney buys a coffee in a cylindrical cup with a cardboard sleeve so the cup isn’t too hot to hold. If the diameter of the slee
    7·1 answer
  • Please please solve this quickly. I've tried many things before, and I have no clue what the answer is.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!