1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
9

Consider the series ∑n=1∞5n2+n.

Mathematics
2 answers:
MAXImum [283]3 years ago
7 0

(a) Decompose the summand into partial fractions:

\dfrac5{n^2+n} = \dfrac5{n(n+1)} = \dfrac an+\dfrac b{n+1}

\implies 5=a(n+1)+bn=(a+b)n+a

\implies a+b=0\text{ and }a=5 \implies b=-5

\implies\displaystyle\sum_{n=1}^\infty\frac5{n^2+n} = 5\sum_{n=1}^\infty\left(\frac1n-\frac1{n+1}\right)

The <em>n</em>-th partial sum for the series is

S_n = 5\displaystyle\sum_{k=1}^n\left(\frac1k-\frac1{k+1}\right)

which can be simplified significantly by examinging consective terms in the sum:

\displaystyle S_n = 5\left(1-\frac12\right) + 5\left(\frac12-\frac13\right) + 5\left(\frac13-\frac14\right) + \cdots + 5\left(\frac1{n-1}-\frac1n\right) + 5\left(\frac1n-\frac1{n+1}\right)

\implies S_n = \boxed{5\left(1-\dfrac1{n+1}\right)}

(b) Using the result of (a), you then get

\displaystyle\sum_{n=1}^\infty\frac5{n^2+n} = \lim_{n\to\infty}\boxed{5\left(1-\frac1{n+1}\right)} = \boxed{5}

(c) As shown in (a), the partial sum is simplified because of the reasons given in options A and D, and the result of (b) says that B is also correct.

alexandr402 [8]3 years ago
3 0

Answer:

Part a.  \displaystyle S_n = 5 - \frac{5}{n + 1}

Part b.  \displaystyle  \lim_{n \to \infty} (5 - \frac{5}{n + 1}) = 5

Part c. A, B, and D

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Pre-Calculus</u>

  • Partial Fraction Decomposition

<u>Calculus</u>

Limits

  • Limit Rule [Variable Direct Substitution]:                                                    \displaystyle \lim_{x \to c} x = c
  • Limit Property [Addition/Subtraction]:                                                         \displaystyle \lim_{x \to c} [f(x) \pm g(x)] =  \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)

Sequences

Series

  • Definition of a convergent or divergent series

Telescoping Series:                                                                                             \displaystyle \sum^\infty_{n = 1} (b_n - b_{n + 1}) = (b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + ... + (b_n - b_{n + 1}) + ...

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n}

<u>Step 2: Rewrite Sum</u>

  1. Factor:                                                                                                           \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \sum^\infty_{n = 1} \frac{5}{n(n + 1)}
  2. Break up [Partial Fraction Decomposition]:                                                 \displaystyle \frac{5}{n(n + 1)} = \frac{A}{n} + \frac{B}{n + 1}
  3. Simplify [Common Denominator]:                                                                 \displaystyle 5 = A(n + 1) + Bn
  4. [Decomp] Substitute in <em>n</em> = 0:                                                                       \displaystyle 5 = A(0 + 1) + B(0)
  5. Simplify:                                                                                                         \displaystyle 5 = A
  6. [Decomp] Substitute in <em>n</em> = -1:                                                                       \displaystyle 5 = A(-1 + 1) + B(-1)
  7. Simplify:                                                                                                         \displaystyle 5 = -B
  8. Solve:                                                                                                             \displaystyle B = -5
  9. [Decomp] Substitute in variables:                                                                 \displaystyle \frac{5}{n(n + 1)} = \frac{5}{n} + \frac{-5}{n + 1}
  10. Simplify:                                                                                                         \displaystyle \frac{5}{n(n + 1)} = \frac{5}{n} - \frac{5}{n + 1}
  11. Substitute in decomp [Sum]:                                                                         \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \sum^\infty_{n = 1} \bigg( \frac{5}{n} - \frac{5}{n + 1} \bigg)

<u>Step 3: Find Sum</u>

  1. Find Sₙ terms:                                                                                                    \displaystyle \sum^\infty_{n = 1} \bigg( \frac{5}{n} - \frac{5}{n + 1} \bigg) = (5 - \frac{5}{2}) + (\frac{5}{2} - \frac{5}{3}) + (\frac{5}{3} - \frac{5}{4}) + (\frac{5}{4} - 1) + ... + ( \frac{5}{n} - \frac{5}{n + 1}) + ...
  2. Find general Sₙ formula:                                                                               \displaystyle S_n = 5 - \frac{5}{n + 1}
  3. Find Sum [Take limit]:                                                                                   \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \lim_{n \to \infty} S_n
  4. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = 5 + 0
  5. Simplify:                                                                                                         \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = 5

∴ the sum converges by the Telescoping Series.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Convergence Tests (BC Only)

Book: College Calculus 10e

You might be interested in
The number 4 is the smallest positive integer that has exactly three factors: 1, 2, and 4. If k is the next-highest integer that
saul85 [17]

To solve this problem, we must do a method of trial and error to find for the next highest integer with exactly three factors. We know that the value of k must be greater than 4, therefore by using trial and error to find for the correct answer:

 

Factors of 5:1, 5

Factors of 6:1, 2, 3, 6

Factors of 7:1, 7

Factors of 8:1, 2, 4, 8

Factors of 9:1, 3, 9

 

Therefore we stop at 9 since this is already our answer. It has exactly three factors.

The sum of the factors is:

sum of factors = 1 + 3 + 9

<span>sum of factors = 13</span>

3 0
3 years ago
Can u help me <br><br>thanks u
vovikov84 [41]
1 1/2=
1.5

1.5 * 3 =

4.5
7 0
3 years ago
HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPp
love history [14]

Answer:

<u>36 in²</u>

Step-by-step explanation:

<u>Area of the figure</u>

  • Area (small rectangle) left + Area (big rectangle) right
  • 3 x (6 - 4) + 5 x 6
  • 3 x 2 + 30
  • 6 + 30
  • <u>36 in²</u>

3 0
2 years ago
Read 2 more answers
Pls someone help me im in a test and im stresssssing??
Dennis_Churaev [7]
Positive 5/8 hope this helps :) uno reverse btw lol
3 0
3 years ago
What happens when you get a negative square root in the quadratic formula?
prisoha [69]
Edited : I apologise I misunderstood the question.

You can solve the equation.
7 0
3 years ago
Other questions:
  • 2/2 divided by 5 equals improper
    12·1 answer
  • In a data set with a minimum value of 54.5 and a maximum value of 98.6 with 300 observations, there are 186 points less than 81.
    8·1 answer
  • The difference of v and 16
    14·1 answer
  • Plz answer in 5 minutes
    15·2 answers
  • According to a 2016 survey, 6 percent of workers arrive to work between 6:45 A.M. and 7:00 A.M. Suppose 300 workers will be sele
    12·1 answer
  • I need help on this question
    9·1 answer
  • Help me please it's due tonight
    15·1 answer
  • Please help me with this math problem please:)
    11·1 answer
  • PLS HELP! DUE TODAY AND WILL MARK BRAINLIEST
    12·1 answer
  • EAZYYYYYYYYYYYY POINTSSSSSSSSSSSSSS<br> I make two people out of one. What am I?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!