1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
9

Consider the series ∑n=1∞5n2+n.

Mathematics
2 answers:
MAXImum [283]3 years ago
7 0

(a) Decompose the summand into partial fractions:

\dfrac5{n^2+n} = \dfrac5{n(n+1)} = \dfrac an+\dfrac b{n+1}

\implies 5=a(n+1)+bn=(a+b)n+a

\implies a+b=0\text{ and }a=5 \implies b=-5

\implies\displaystyle\sum_{n=1}^\infty\frac5{n^2+n} = 5\sum_{n=1}^\infty\left(\frac1n-\frac1{n+1}\right)

The <em>n</em>-th partial sum for the series is

S_n = 5\displaystyle\sum_{k=1}^n\left(\frac1k-\frac1{k+1}\right)

which can be simplified significantly by examinging consective terms in the sum:

\displaystyle S_n = 5\left(1-\frac12\right) + 5\left(\frac12-\frac13\right) + 5\left(\frac13-\frac14\right) + \cdots + 5\left(\frac1{n-1}-\frac1n\right) + 5\left(\frac1n-\frac1{n+1}\right)

\implies S_n = \boxed{5\left(1-\dfrac1{n+1}\right)}

(b) Using the result of (a), you then get

\displaystyle\sum_{n=1}^\infty\frac5{n^2+n} = \lim_{n\to\infty}\boxed{5\left(1-\frac1{n+1}\right)} = \boxed{5}

(c) As shown in (a), the partial sum is simplified because of the reasons given in options A and D, and the result of (b) says that B is also correct.

alexandr402 [8]3 years ago
3 0

Answer:

Part a.  \displaystyle S_n = 5 - \frac{5}{n + 1}

Part b.  \displaystyle  \lim_{n \to \infty} (5 - \frac{5}{n + 1}) = 5

Part c. A, B, and D

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Pre-Calculus</u>

  • Partial Fraction Decomposition

<u>Calculus</u>

Limits

  • Limit Rule [Variable Direct Substitution]:                                                    \displaystyle \lim_{x \to c} x = c
  • Limit Property [Addition/Subtraction]:                                                         \displaystyle \lim_{x \to c} [f(x) \pm g(x)] =  \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)

Sequences

Series

  • Definition of a convergent or divergent series

Telescoping Series:                                                                                             \displaystyle \sum^\infty_{n = 1} (b_n - b_{n + 1}) = (b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + ... + (b_n - b_{n + 1}) + ...

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n}

<u>Step 2: Rewrite Sum</u>

  1. Factor:                                                                                                           \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \sum^\infty_{n = 1} \frac{5}{n(n + 1)}
  2. Break up [Partial Fraction Decomposition]:                                                 \displaystyle \frac{5}{n(n + 1)} = \frac{A}{n} + \frac{B}{n + 1}
  3. Simplify [Common Denominator]:                                                                 \displaystyle 5 = A(n + 1) + Bn
  4. [Decomp] Substitute in <em>n</em> = 0:                                                                       \displaystyle 5 = A(0 + 1) + B(0)
  5. Simplify:                                                                                                         \displaystyle 5 = A
  6. [Decomp] Substitute in <em>n</em> = -1:                                                                       \displaystyle 5 = A(-1 + 1) + B(-1)
  7. Simplify:                                                                                                         \displaystyle 5 = -B
  8. Solve:                                                                                                             \displaystyle B = -5
  9. [Decomp] Substitute in variables:                                                                 \displaystyle \frac{5}{n(n + 1)} = \frac{5}{n} + \frac{-5}{n + 1}
  10. Simplify:                                                                                                         \displaystyle \frac{5}{n(n + 1)} = \frac{5}{n} - \frac{5}{n + 1}
  11. Substitute in decomp [Sum]:                                                                         \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \sum^\infty_{n = 1} \bigg( \frac{5}{n} - \frac{5}{n + 1} \bigg)

<u>Step 3: Find Sum</u>

  1. Find Sₙ terms:                                                                                                    \displaystyle \sum^\infty_{n = 1} \bigg( \frac{5}{n} - \frac{5}{n + 1} \bigg) = (5 - \frac{5}{2}) + (\frac{5}{2} - \frac{5}{3}) + (\frac{5}{3} - \frac{5}{4}) + (\frac{5}{4} - 1) + ... + ( \frac{5}{n} - \frac{5}{n + 1}) + ...
  2. Find general Sₙ formula:                                                                               \displaystyle S_n = 5 - \frac{5}{n + 1}
  3. Find Sum [Take limit]:                                                                                   \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \lim_{n \to \infty} S_n
  4. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = 5 + 0
  5. Simplify:                                                                                                         \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = 5

∴ the sum converges by the Telescoping Series.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Convergence Tests (BC Only)

Book: College Calculus 10e

You might be interested in
Need help answer this
Marianna [84]

Answer:

sorry but the question isn't clearly understandable!! maybe Post the full question

6 0
3 years ago
The segments shown below could form a triangle. True B. False​
Vesna [10]
True

It won’t be a Prefect Triangle but it still is one
(sorry my drawing is bad)

3 0
3 years ago
I will be forever in your debt, ( and a brainiest) if you help me
gogolik [260]

Answer:

Step-by-step explanation:

12P3 = 12! / (12-3)!

= 12*11*10

= 1320.

8C7 = 8!/7! *(8-7)!

= 8.

3 0
2 years ago
Find two numbers whose sum is -7 and whose difference is -1. Your answer is:
Katena32 [7]

-3 & -4;

-3 + (-4) = 7

-3-(-4) = -3+4 = 1

3 0
4 years ago
Which is true about the polynomial 9x²y – 6x - 5y^2
Ostrovityanka [42]

Answer:

D

Step-by-step explanation:

It is a trinomial with a degree of 3.

This is the correct answer on the exam.

7 0
3 years ago
Other questions:
  • Assume that you want to test the claim that the paired sample data come from a population for which the mean difference is μd =
    7·1 answer
  • Hector surveyed all the sixth graders at his school about their favorite after-school activity.The table shows the results that
    12·1 answer
  • NEED HELP NOW 25 POINTS!!!!!!!
    6·1 answer
  • Which graph shows the solution to the inequality -3x-7x&lt;20
    7·1 answer
  • 800 is 10 times as much as ---------
    15·2 answers
  • If 6 is added to three quarters of a certain number, the result is 42 . Find the original number​
    12·2 answers
  • The curved surface area of a right circular cylinder of height 14 cm is 88 cm2. find the diameter of the base of the cylinder​
    9·1 answer
  • What is the equation of the line that has a slope of 1 and passes through Point (1, 5)​
    5·1 answer
  • Amber baked 243 cookies. She wants to share the cookies evenly among 13 friends in her class. How many cookies will each friend
    6·2 answers
  • How do you get from 24 to a hundred
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!