1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
9

Consider the series ∑n=1∞5n2+n.

Mathematics
2 answers:
MAXImum [283]3 years ago
7 0

(a) Decompose the summand into partial fractions:

\dfrac5{n^2+n} = \dfrac5{n(n+1)} = \dfrac an+\dfrac b{n+1}

\implies 5=a(n+1)+bn=(a+b)n+a

\implies a+b=0\text{ and }a=5 \implies b=-5

\implies\displaystyle\sum_{n=1}^\infty\frac5{n^2+n} = 5\sum_{n=1}^\infty\left(\frac1n-\frac1{n+1}\right)

The <em>n</em>-th partial sum for the series is

S_n = 5\displaystyle\sum_{k=1}^n\left(\frac1k-\frac1{k+1}\right)

which can be simplified significantly by examinging consective terms in the sum:

\displaystyle S_n = 5\left(1-\frac12\right) + 5\left(\frac12-\frac13\right) + 5\left(\frac13-\frac14\right) + \cdots + 5\left(\frac1{n-1}-\frac1n\right) + 5\left(\frac1n-\frac1{n+1}\right)

\implies S_n = \boxed{5\left(1-\dfrac1{n+1}\right)}

(b) Using the result of (a), you then get

\displaystyle\sum_{n=1}^\infty\frac5{n^2+n} = \lim_{n\to\infty}\boxed{5\left(1-\frac1{n+1}\right)} = \boxed{5}

(c) As shown in (a), the partial sum is simplified because of the reasons given in options A and D, and the result of (b) says that B is also correct.

alexandr402 [8]3 years ago
3 0

Answer:

Part a.  \displaystyle S_n = 5 - \frac{5}{n + 1}

Part b.  \displaystyle  \lim_{n \to \infty} (5 - \frac{5}{n + 1}) = 5

Part c. A, B, and D

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Pre-Calculus</u>

  • Partial Fraction Decomposition

<u>Calculus</u>

Limits

  • Limit Rule [Variable Direct Substitution]:                                                    \displaystyle \lim_{x \to c} x = c
  • Limit Property [Addition/Subtraction]:                                                         \displaystyle \lim_{x \to c} [f(x) \pm g(x)] =  \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)

Sequences

Series

  • Definition of a convergent or divergent series

Telescoping Series:                                                                                             \displaystyle \sum^\infty_{n = 1} (b_n - b_{n + 1}) = (b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + ... + (b_n - b_{n + 1}) + ...

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n}

<u>Step 2: Rewrite Sum</u>

  1. Factor:                                                                                                           \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \sum^\infty_{n = 1} \frac{5}{n(n + 1)}
  2. Break up [Partial Fraction Decomposition]:                                                 \displaystyle \frac{5}{n(n + 1)} = \frac{A}{n} + \frac{B}{n + 1}
  3. Simplify [Common Denominator]:                                                                 \displaystyle 5 = A(n + 1) + Bn
  4. [Decomp] Substitute in <em>n</em> = 0:                                                                       \displaystyle 5 = A(0 + 1) + B(0)
  5. Simplify:                                                                                                         \displaystyle 5 = A
  6. [Decomp] Substitute in <em>n</em> = -1:                                                                       \displaystyle 5 = A(-1 + 1) + B(-1)
  7. Simplify:                                                                                                         \displaystyle 5 = -B
  8. Solve:                                                                                                             \displaystyle B = -5
  9. [Decomp] Substitute in variables:                                                                 \displaystyle \frac{5}{n(n + 1)} = \frac{5}{n} + \frac{-5}{n + 1}
  10. Simplify:                                                                                                         \displaystyle \frac{5}{n(n + 1)} = \frac{5}{n} - \frac{5}{n + 1}
  11. Substitute in decomp [Sum]:                                                                         \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \sum^\infty_{n = 1} \bigg( \frac{5}{n} - \frac{5}{n + 1} \bigg)

<u>Step 3: Find Sum</u>

  1. Find Sₙ terms:                                                                                                    \displaystyle \sum^\infty_{n = 1} \bigg( \frac{5}{n} - \frac{5}{n + 1} \bigg) = (5 - \frac{5}{2}) + (\frac{5}{2} - \frac{5}{3}) + (\frac{5}{3} - \frac{5}{4}) + (\frac{5}{4} - 1) + ... + ( \frac{5}{n} - \frac{5}{n + 1}) + ...
  2. Find general Sₙ formula:                                                                               \displaystyle S_n = 5 - \frac{5}{n + 1}
  3. Find Sum [Take limit]:                                                                                   \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \lim_{n \to \infty} S_n
  4. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = 5 + 0
  5. Simplify:                                                                                                         \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = 5

∴ the sum converges by the Telescoping Series.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Convergence Tests (BC Only)

Book: College Calculus 10e

You might be interested in
Blanca jogged 8 days last month. She jogged 1.25 miles on each of these days and burned 140 calories per mile while jogging.
Marat540 [252]
Answer: 1,400 calories



Bianca jogged 1.25 miles per day for 8 days. so 1.25*8 would equal 10 miles.

Since she jogged 10 miles and burned 140 calories per mile, if we multiply 10*140, we would get 1,400.

So last month, she lost 1,400 calories.
6 0
3 years ago
a sidewalk is 5ft wide, 6in deep, and 220 ft long. how many cubic yards of concrete are needed to fill it?
tangare [24]

Answer:

1100/54 yds

Step-by-step explanation:

First convert inches and feet to yards

[3 ft = 1 yd, 12in = 1yd]

5ft = 1 2/3 yds

6in = 1/6 yds

220ft = 73 1/3 yds

Now use the volume formula,

b*w*h = A

[1 2/3] * [1/6] * [73 1/3]

= [5/3] * [1/6] * [220/3]

= [5/18] * [220/3]

= 1100/54 yds

8 0
3 years ago
Marta believes that the equation of the line of best fit for the scatterplot below is -
Alexus [3.1K]

Marta’s equation has a positive y-intercept, but the scatterplot shows a negative correlation.

<h3>What is a scatter plot?</h3>

The scatter plot is a manner in which data is presented as dots on a cartesian axes, The line of best fit is a description of the data that is presented in the scatter plot.

Hence, Marta is incorrect because Marta’s equation has a positive y-intercept, but the scatterplot shows a negative correlation.

Missing parts;

Marta believes that the equation of the line of best fit for the scatterplot below is y=-5/9x+23/9. Which statement best summarizes why Marta is likely incorrect?

Marta’s equation has a positive y-intercept, but the scatterplot suggests a negative y-intercept.

Marta’s equation has a positive y-intercept, but the scatterplot shows a negative correlation.

Marta’s equation has a negative slope, but the scatterplot suggests a negative y-intercept.

Marta’s equation has a negative slope, but the scatterplot shows a positive correlation.

Learn more about scatter plot:brainly.com/question/13984412

#SPJ1

7 0
2 years ago
Israel has a total of 25 coins in his pocket - they are
antoniya [11.8K]

Answer:

15x 1y

Step-by-step explanation:

im smart

6 0
3 years ago
What is the volume of the cylinder shown below?
Mariana [72]

Answer:

there's no cylinder

Step-by-step explanation:

If you can edit the question and put it I'll help you

5 0
3 years ago
Read 2 more answers
Other questions:
  • How do you do this question?
    7·1 answer
  • A cone has a diameter of 24 in. and a slant height of 15 in.
    9·1 answer
  • A bus went 240 km farther than a car. The car went one-fourth the distance of the bus. How far did each vehicle travel? Choices
    9·1 answer
  • 20 POINTS!!!
    7·2 answers
  • Some help me please help me please help me please help me please help me please help me please help me please help me please
    5·2 answers
  • Please help and show work!! I really need help please!!
    9·2 answers
  • Write an equivalent expression in standa<br> form and collect like terms.<br> 2x - (x + 8) - 4
    8·1 answer
  • Caroline and Helen share a job in the ratio 3:2.
    12·1 answer
  • Which decision is NOT represented by one of these models?
    13·2 answers
  • Please Answer this as soon as possible.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!