1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
9

Consider the series ∑n=1∞5n2+n.

Mathematics
2 answers:
MAXImum [283]3 years ago
7 0

(a) Decompose the summand into partial fractions:

\dfrac5{n^2+n} = \dfrac5{n(n+1)} = \dfrac an+\dfrac b{n+1}

\implies 5=a(n+1)+bn=(a+b)n+a

\implies a+b=0\text{ and }a=5 \implies b=-5

\implies\displaystyle\sum_{n=1}^\infty\frac5{n^2+n} = 5\sum_{n=1}^\infty\left(\frac1n-\frac1{n+1}\right)

The <em>n</em>-th partial sum for the series is

S_n = 5\displaystyle\sum_{k=1}^n\left(\frac1k-\frac1{k+1}\right)

which can be simplified significantly by examinging consective terms in the sum:

\displaystyle S_n = 5\left(1-\frac12\right) + 5\left(\frac12-\frac13\right) + 5\left(\frac13-\frac14\right) + \cdots + 5\left(\frac1{n-1}-\frac1n\right) + 5\left(\frac1n-\frac1{n+1}\right)

\implies S_n = \boxed{5\left(1-\dfrac1{n+1}\right)}

(b) Using the result of (a), you then get

\displaystyle\sum_{n=1}^\infty\frac5{n^2+n} = \lim_{n\to\infty}\boxed{5\left(1-\frac1{n+1}\right)} = \boxed{5}

(c) As shown in (a), the partial sum is simplified because of the reasons given in options A and D, and the result of (b) says that B is also correct.

alexandr402 [8]3 years ago
3 0

Answer:

Part a.  \displaystyle S_n = 5 - \frac{5}{n + 1}

Part b.  \displaystyle  \lim_{n \to \infty} (5 - \frac{5}{n + 1}) = 5

Part c. A, B, and D

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Pre-Calculus</u>

  • Partial Fraction Decomposition

<u>Calculus</u>

Limits

  • Limit Rule [Variable Direct Substitution]:                                                    \displaystyle \lim_{x \to c} x = c
  • Limit Property [Addition/Subtraction]:                                                         \displaystyle \lim_{x \to c} [f(x) \pm g(x)] =  \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)

Sequences

Series

  • Definition of a convergent or divergent series

Telescoping Series:                                                                                             \displaystyle \sum^\infty_{n = 1} (b_n - b_{n + 1}) = (b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + ... + (b_n - b_{n + 1}) + ...

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n}

<u>Step 2: Rewrite Sum</u>

  1. Factor:                                                                                                           \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \sum^\infty_{n = 1} \frac{5}{n(n + 1)}
  2. Break up [Partial Fraction Decomposition]:                                                 \displaystyle \frac{5}{n(n + 1)} = \frac{A}{n} + \frac{B}{n + 1}
  3. Simplify [Common Denominator]:                                                                 \displaystyle 5 = A(n + 1) + Bn
  4. [Decomp] Substitute in <em>n</em> = 0:                                                                       \displaystyle 5 = A(0 + 1) + B(0)
  5. Simplify:                                                                                                         \displaystyle 5 = A
  6. [Decomp] Substitute in <em>n</em> = -1:                                                                       \displaystyle 5 = A(-1 + 1) + B(-1)
  7. Simplify:                                                                                                         \displaystyle 5 = -B
  8. Solve:                                                                                                             \displaystyle B = -5
  9. [Decomp] Substitute in variables:                                                                 \displaystyle \frac{5}{n(n + 1)} = \frac{5}{n} + \frac{-5}{n + 1}
  10. Simplify:                                                                                                         \displaystyle \frac{5}{n(n + 1)} = \frac{5}{n} - \frac{5}{n + 1}
  11. Substitute in decomp [Sum]:                                                                         \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \sum^\infty_{n = 1} \bigg( \frac{5}{n} - \frac{5}{n + 1} \bigg)

<u>Step 3: Find Sum</u>

  1. Find Sₙ terms:                                                                                                    \displaystyle \sum^\infty_{n = 1} \bigg( \frac{5}{n} - \frac{5}{n + 1} \bigg) = (5 - \frac{5}{2}) + (\frac{5}{2} - \frac{5}{3}) + (\frac{5}{3} - \frac{5}{4}) + (\frac{5}{4} - 1) + ... + ( \frac{5}{n} - \frac{5}{n + 1}) + ...
  2. Find general Sₙ formula:                                                                               \displaystyle S_n = 5 - \frac{5}{n + 1}
  3. Find Sum [Take limit]:                                                                                   \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \lim_{n \to \infty} S_n
  4. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = 5 + 0
  5. Simplify:                                                                                                         \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = 5

∴ the sum converges by the Telescoping Series.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Convergence Tests (BC Only)

Book: College Calculus 10e

You might be interested in
The length of a rectangle is 3 1/6 cm longer than the width. The perimeter of the rectangle is 15 1/3 cm. What are the width and
eimsori [14]

Answer:

1212

Step-by-step explanation:

121212212

8 0
3 years ago
Equation for a parabola with a focus of (2, -2) and a directrix of y=-8
Fantom [35]

Answer:

y=1/8(-x^2+4x+44

Step-by-step explanation:

In this question the given focus is (2,4) and a directrix of y = 8 and we have to derive the equation of the parabola.

Let (x,y) is a point on the given parabola.Then the distance between the point (x,y) to (2,4) and the distance from (x,y) to diractrix will be same.

Distance between (x,y) and (2,4)

= √(x-2)²+(y-4)²

And the distance between (x,y) and directrix y=8

= (y-8)

Now √(x-2)²+(y-4)² = (y-8)

(x-2)²+(y-4)² = (y-8)²

x²+4-4x+y²+16-8y = y²+64-16y

x²+20+y²-4x-8y = y²-16y+64

x²+20-4x-8y+16y-64=0

x²+8y-4x-44 = 0

8y = -x²+4x+44

5 0
3 years ago
Read 2 more answers
what's the slope? simplify your answer and write it as a proper fraction,improper fraction or integer ​
dybincka [34]

Answer:

\frac{1}{2}

Step-by-step explanation:

In this graph, when you count rise and run, rise would be 1 and run would be 2. Because slope is also known as rate of change and rate of change is also known as rise over run, the slope will be 1 over 2.

8 0
3 years ago
The price of a DVD is $19 . The price is 12% lower than last week. What was the price of the DVD last week? Round your answer to
nataly862011 [7]

Answer:

The original cost of the DVD was $21`.59

Step-by-step explanation:

In order to find this, you first must note that the new price is 88% of the older price. We get this since there was a subtraction of 12%.

Now knowing that, we can divide the new price by the percentage paid and it will give us the original price.

$19/88% = Original Cost

19/.88 = Original Cost

$21.59 = Original Cost

5 0
3 years ago
So its 8p = 56 is the frist bit and the second is 7. BOOM
Mice21 [21]

p=7, I don't know if this is a question or not

7 0
2 years ago
Other questions:
  • An object was thrown upward from the top of an 80ft tower. The height h of the object after t seconds is represented by the quad
    13·2 answers
  • the sum of three consecutive even numbers is 42. The sum can be represented by the equation n+(n+2)+(n+4)=42. what does n repres
    9·1 answer
  • A toy bucket is shaped like a cylinder with a diameter of 9 inches and a height of 12 inches. How much sand can the bucket hold?
    15·1 answer
  • How can you put (6.4+0.92, 15.74-2.64) on a graph
    11·1 answer
  • How can the distributive property be used to multiply numbers
    15·1 answer
  • 25.) 3x=log_6216<br><br><br>26.) x-4=log_3243<br><br>Algebra 2 homework I need help ASAP
    12·1 answer
  • Y=x² – 8x + 16<br><br>So right now I'm trying to figure out the inverse relation ​
    7·1 answer
  • How long will they take to make 504 muffins if they will be using 4 ovens? <br>​
    8·1 answer
  • Turn into an equation please:
    11·2 answers
  • Plsss if you can find x
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!