1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
9

Consider the series ∑n=1∞5n2+n.

Mathematics
2 answers:
MAXImum [283]3 years ago
7 0

(a) Decompose the summand into partial fractions:

\dfrac5{n^2+n} = \dfrac5{n(n+1)} = \dfrac an+\dfrac b{n+1}

\implies 5=a(n+1)+bn=(a+b)n+a

\implies a+b=0\text{ and }a=5 \implies b=-5

\implies\displaystyle\sum_{n=1}^\infty\frac5{n^2+n} = 5\sum_{n=1}^\infty\left(\frac1n-\frac1{n+1}\right)

The <em>n</em>-th partial sum for the series is

S_n = 5\displaystyle\sum_{k=1}^n\left(\frac1k-\frac1{k+1}\right)

which can be simplified significantly by examinging consective terms in the sum:

\displaystyle S_n = 5\left(1-\frac12\right) + 5\left(\frac12-\frac13\right) + 5\left(\frac13-\frac14\right) + \cdots + 5\left(\frac1{n-1}-\frac1n\right) + 5\left(\frac1n-\frac1{n+1}\right)

\implies S_n = \boxed{5\left(1-\dfrac1{n+1}\right)}

(b) Using the result of (a), you then get

\displaystyle\sum_{n=1}^\infty\frac5{n^2+n} = \lim_{n\to\infty}\boxed{5\left(1-\frac1{n+1}\right)} = \boxed{5}

(c) As shown in (a), the partial sum is simplified because of the reasons given in options A and D, and the result of (b) says that B is also correct.

alexandr402 [8]3 years ago
3 0

Answer:

Part a.  \displaystyle S_n = 5 - \frac{5}{n + 1}

Part b.  \displaystyle  \lim_{n \to \infty} (5 - \frac{5}{n + 1}) = 5

Part c. A, B, and D

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Pre-Calculus</u>

  • Partial Fraction Decomposition

<u>Calculus</u>

Limits

  • Limit Rule [Variable Direct Substitution]:                                                    \displaystyle \lim_{x \to c} x = c
  • Limit Property [Addition/Subtraction]:                                                         \displaystyle \lim_{x \to c} [f(x) \pm g(x)] =  \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)

Sequences

Series

  • Definition of a convergent or divergent series

Telescoping Series:                                                                                             \displaystyle \sum^\infty_{n = 1} (b_n - b_{n + 1}) = (b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + ... + (b_n - b_{n + 1}) + ...

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n}

<u>Step 2: Rewrite Sum</u>

  1. Factor:                                                                                                           \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \sum^\infty_{n = 1} \frac{5}{n(n + 1)}
  2. Break up [Partial Fraction Decomposition]:                                                 \displaystyle \frac{5}{n(n + 1)} = \frac{A}{n} + \frac{B}{n + 1}
  3. Simplify [Common Denominator]:                                                                 \displaystyle 5 = A(n + 1) + Bn
  4. [Decomp] Substitute in <em>n</em> = 0:                                                                       \displaystyle 5 = A(0 + 1) + B(0)
  5. Simplify:                                                                                                         \displaystyle 5 = A
  6. [Decomp] Substitute in <em>n</em> = -1:                                                                       \displaystyle 5 = A(-1 + 1) + B(-1)
  7. Simplify:                                                                                                         \displaystyle 5 = -B
  8. Solve:                                                                                                             \displaystyle B = -5
  9. [Decomp] Substitute in variables:                                                                 \displaystyle \frac{5}{n(n + 1)} = \frac{5}{n} + \frac{-5}{n + 1}
  10. Simplify:                                                                                                         \displaystyle \frac{5}{n(n + 1)} = \frac{5}{n} - \frac{5}{n + 1}
  11. Substitute in decomp [Sum]:                                                                         \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \sum^\infty_{n = 1} \bigg( \frac{5}{n} - \frac{5}{n + 1} \bigg)

<u>Step 3: Find Sum</u>

  1. Find Sₙ terms:                                                                                                    \displaystyle \sum^\infty_{n = 1} \bigg( \frac{5}{n} - \frac{5}{n + 1} \bigg) = (5 - \frac{5}{2}) + (\frac{5}{2} - \frac{5}{3}) + (\frac{5}{3} - \frac{5}{4}) + (\frac{5}{4} - 1) + ... + ( \frac{5}{n} - \frac{5}{n + 1}) + ...
  2. Find general Sₙ formula:                                                                               \displaystyle S_n = 5 - \frac{5}{n + 1}
  3. Find Sum [Take limit]:                                                                                   \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = \lim_{n \to \infty} S_n
  4. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = 5 + 0
  5. Simplify:                                                                                                         \displaystyle \sum^\infty_{n = 1} \frac{5}{n^2 + n} = 5

∴ the sum converges by the Telescoping Series.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Convergence Tests (BC Only)

Book: College Calculus 10e

You might be interested in
The total price for 7 movie tickets is 92.40 . If each ticket costs the same amount, how much does one movie ticket cost?
horsena [70]

Answer:

$13.20

Step-by-step explanation:

total cost of tickets = $92.40

total number of tickets = 7

cost of each ticket

= total cost of tickets ÷ total number of tickets

= 92.40 ÷ 7

= $13.20

hope this helps

8 0
3 years ago
Read 2 more answers
Calculate the volume of each diagrams.
wariber [46]

The volume of the solid objects are 612π in³ and 1566πcm³

<h3>Volume of solid object</h3>

The given objects are composite figures consisting of two shapes.

The volume of the blue figure is expressed as;

Volume = Volume of cylinder + volume of hemisphere

Volume = πr²h + 2/3πr³

Volume =  πr²(h + 2/3r)

Volume =  π(6)²(13+2/3(6))

Volume = 36π(13 + 4)

Volume = 612π in³

For the other object

Volume = Volume of cylinder + volume of cone

Volume = πr²h + 1/3πr²h

Volume =  π(9)²(15) + 1/3π(9)²(13)

Volume=  81π (15+13/3)
Volume= 1566πcm³

Hence the volume of the solid objects are 612π in³ and 1566πcm³

Learn more on volume of composite figures here: brainly.com/question/1205683

#SPJ1

8 0
2 years ago
During one day at an office, one-half of the amount of money in the petty drawer was used in the morning, and one-third of the r
Paha777 [63]

Answer:

idk you tell me

Step-by-step explanation:

1. you should tell me

2. i write the answer when you tell me

4 0
3 years ago
Read 2 more answers
Find the numerical values of -3|x|+2x-1 if x=-5. PLSSSS HELP
Kisachek [45]

Answer:

26

Step-by-step explanation:

Since x = -5, we can replace x with it's numerical -5, right? The problem tells you that x is equal to -5. So, just replace any x you see with -5.

So in this case,

-3|x|+2x-1

turns into:

-3|(-5)|+2(-5)-1

You can use a calculator or solve it by hand to see what the answer is.

-3|(-5)|+2(-5)-1\\-3(5)+2(-5)-1\\-15+(-10)-1\\-25-1\\-26

3 0
2 years ago
Complete the square to solve the equation below. <br> Check all that apply.<br> x^2-10x-4=10
fomenos

1. Move terms to the left side

2.Subtract the numbers

3.Use the quadratic formula

4.Simplify

5.Separate the equations

6.Solve

Rearrange and isolate the variable to find each solution.

Solution,

Solution

x=5±√39

7 0
3 years ago
Other questions:
  • You pull out the plug from the bathtub. After 40 seconds, there are 13 gallons of water left in the tub. One minute after you pu
    13·1 answer
  • Find the slope of a line containing points 4,-6 and 6,-4
    9·1 answer
  • Classify the AVERAGE number of students in all the math classes at Ponderosa. (Click all that apply)
    7·1 answer
  • Elizabeth is draining the water from a public pool. The pool is being drained at a rate of 714 gallons per hour. Which graph app
    10·1 answer
  • Label each of the choices below to show whether it is an expression or an equation.
    6·1 answer
  • What is 5 divided 49 how do you write the problem
    6·1 answer
  • Which system of linear equations appears to have a solution of (-1, 4)?
    14·2 answers
  • What is 999 - 1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 +1 + 11 -1 = ???
    12·2 answers
  • F(x) = -2x^3 + 3(x + 2). Does this mean that it's f(3) = -39
    5·1 answer
  • Simplify to a single power of 5:<br><br> (5^4)^3
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!