1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pav-90 [236]
3 years ago
12

100 POINTS AND BRAINLIEST FOR THIS WHOLE SEGMENT

Mathematics
1 answer:
Inga [223]3 years ago
7 0

Answer:

See Below (Boxed Solutions).

Step-by-step explanation:

We are given the two complex numbers:

\displaystyle z = \sqrt{3} - i\text{ and } w = 6\left(\cos \frac{5\pi}{12} + i\sin \frac{5\pi}{12}\right)

First, convert <em>z</em> to polar form. Recall that polar form of a complex number is:

z=r\left(\cos \theta + i\sin\theta\right)

We will first find its modulus <em>r</em>, which is given by:

\displaystyle r = |z| = \sqrt{a^2+b^2}

In this case, <em>a</em> = √3 and <em>b</em> = -1. Thus, the modulus is:

r = \sqrt{(\sqrt{3})^2 + (-1)^2} = 2

Next, find the argument θ in [0, 2π). Recall that:

\displaystyle \tan \theta = \frac{b}{a}

Therefore:

\displaystyle \theta = \arctan\frac{(-1)}{\sqrt{3}}

Evaluate:

\displaystyle \theta = -\frac{\pi}{6}

Since <em>z</em> must be in QIV, using reference angles, the argument will be:

\displaystyle \theta = \frac{11\pi}{6}

Therefore, <em>z</em> in polar form is:

\displaystyle z=2\left(\cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6}\right)

Part A)

Recall that when multiplying two complex numbers <em>z</em> and <em>w: </em>

<em />zw=r_1\cdot r_2 \left(\cos (\theta _1 + \theta _2) + i\sin(\theta_1 + \theta_2)\right)<em />

<em />

Therefore:

\displaystyle zw = (2)(6)\left(\cos\left(\frac{11\pi}{6} + \frac{5\pi}{12}\right) + i\sin\left(\frac{11\pi}{6} + \frac{5\pi}{12}\right)\right)

Simplify. Hence, our polar form is:

\displaystyle\boxed{zw = 12\left(\cos\frac{9\pi}{4} + i\sin \frac{9\pi}{4}\right)}

To find the complex form, evaluate:

\displaystyle zw = 12\cos \frac{9\pi}{4} + i\left(12\sin \frac{9\pi}{4}\right) =\boxed{ 6\sqrt{2} + 6i\sqrt{2}}

Part B)

Recall that when raising a complex number to an exponent <em>n: </em>

\displaystyle z^n = r^n\left(\cos (n\cdot \theta) + i\sin (n\cdot \theta)\right)

Therefore:

\displaystyle z^{10} = r^{10} \left(\cos (10\theta) + i\sin (10\theta)\right)

Substitute:

\displaystyle z^{10} = (2)^{10} \left(\cos \left(10\left(\frac{11\pi}{6}\right)\right) + i\sin \left(10\left(\frac{11\pi}{6}\right)\right)\right)

Simplify:

<h3>\displaystyle z^{10} = 1024\left(\cos\frac{55\pi}{3}+i\sin \frac{55\pi}{3}\right)</h3>

Simplify using coterminal angles. Thus, the polar form is:

\displaystyle \boxed{z^{10} = 1024\left(\cos \frac{\pi}{3} + i\sin \frac{\pi}{3}\right)}

And the complex form is:

\displaystyle z^{10} = 1024\cos \frac{\pi}{3} + i\left(1024\sin \frac{\pi}{3}\right) = \boxed{512+512i\sqrt{3}}

Part C)

Recall that:

\displaystyle \frac{z}{w} = \frac{r_1}{r_2} \left(\cos (\theta_1-\theta_2)+i\sin(\theta_1-\theta_2)\right)

Therefore:

\displaystyle \frac{z}{w} = \frac{(2)}{(6)}\left(\cos \left(\frac{11\pi}{6} - \frac{5\pi}{12}\right)  + i \sin \left(\frac{11\pi}{6} - \frac{5\pi}{12}\right)\right)

Simplify. Hence, our polar form is:

\displaystyle\boxed{ \frac{z}{w}  = \frac{1}{3} \left(\cos \frac{17\pi}{12} + i \sin \frac{17\pi}{12}\right)}

And the complex form is:

\displaystyle \begin{aligned} \frac{z}{w} &= \frac{1}{3} \cos\frac{5\pi}{12} + i \left(\frac{1}{3} \sin \frac{5\pi}{12}\right)\right)\\ \\ &=\frac{1}{3}\left(\frac{\sqrt{2}-\sqrt{6}}{4}\right) + i\left(\frac{1}{3}\left(- \frac{\sqrt{6} + \sqrt{2}}{4}\right)\right) \\ \\ &= \boxed{\frac{\sqrt{2} - \sqrt{6}}{12} -\frac{\sqrt{6}+\sqrt{2}}{12}i}\end{aligned}

Part D)

Let <em>a</em> be a cube root of <em>z</em>. Then by definition:

\displaystyle a^3 = z = 2\left(\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}\right)

From the property in Part B, we know that:

\displaystyle a^3 = r^3\left(\cos (3\theta) + i\sin(3\theta)\right)

Therefore:

\displaystyle r^3\left(\cos (3\theta) + i\sin (3\theta)\right) =  2\left(\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}\right)

If two complex numbers are equal, their modulus and arguments must be equivalent. Thus:

\displaystyle r^3 = 2\text{ and } 3\theta = \frac{11\pi}{6}

The first equation can be easily solved:

r=\sqrt[3]{2}

For the second equation, 3θ must equal 11π/6 and any other rotation. In other words:

\displaystyle 3\theta = \frac{11\pi}{6} + 2\pi n\text{ where } n\in \mathbb{Z}

Solve for the argument:

\displaystyle \theta = \frac{11\pi}{18} + \frac{2n\pi}{3} \text{ where } n \in \mathbb{Z}

There are three distinct solutions within [0, 2π):

\displaystyle \theta = \frac{11\pi}{18} , \frac{23\pi}{18}\text{ and } \frac{35\pi}{18}

Hence, the three roots are:

\displaystyle a_1 = \sqrt[3]{2} \left(\cos\frac{11\pi}{18}+ \sin \frac{11\pi}{18}\right) \\ \\ \\ a_2 = \sqrt[3]{2} \left(\cos \frac{23\pi}{18} + i\sin\frac{23\pi}{18}\right) \\ \\ \\ a_3 = \sqrt[3]{2} \left(\cos \frac{35\pi}{18} + i\sin \frac{35\pi}{18}\right)

Or, approximately:

\displaystyle\boxed{ a _ 1\approx -0.4309 + 1.1839i,} \\ \\ \boxed{a_2 \approx -0.8099-0.9652i,} \\ \\ \boxed{a_3\approx 1.2408-0.2188i}

You might be interested in
A camera store offers a discount of 5% off the cost of photo paper. The discount is applied before tax. A customer buys photo pa
cestrela7 [59]

Answer:

$12.86

Step-by-step explanation:

multiply 13.50 by 0.05 and subtract the answer from 13.50

7 0
3 years ago
A number sentence is example of which multiplication property
nignag [31]
The associtive property is the rule that refers to grouping.
6 0
3 years ago
tell me you love me pls i need sum luv i spents alot of time doing this im doing another one but 100 pts
Anestetic [448]

Answer:

I love you and i'm proud of you :)

8 0
3 years ago
A bag contains 40 cards of five different colors. The probability of selecting each color is listed in the chart.
inna [77]

Answer:

c

Step-by-step explanation:

5 0
3 years ago
The rate of residential electricity consumption​ (in billions of kilowatt hours​ (kWh) per​ year) of a country is approximated b
Fiesta28 [93]
Congrats on making it to integrals!
Basically you need to integral your function because integral rate in respect to time = total amount.
Also your bounts are (2001-1990,2006-1990)=(11,16)

Thus we take integral like:
int(11,16)(928.5e^(0.0249x))=
(11,16)928/0.0249e^(0.0249(x))-928/0.0249e^(0.0249(x))
(You can check this by taking its derivative and seeing if you get the original function)
928/0.0249e^(0.0249(16))-928/0.0249e^(0.0249(11))=6498.1
4 0
4 years ago
Other questions:
  • Gasoline is that distillation fraction that has a boiling point range of
    11·2 answers
  • Driving me nuts this one.
    6·1 answer
  • Solve for x and y<br>17) 2x - 3y = -1<br>y = x-1​
    10·1 answer
  • F(x)=-x^5+4x^3-x+1 # of turns # of solutions and is the right side going up or down?
    14·1 answer
  • An object is launched directly upward with an initial velocity of 64 feet per second from a platform 80 feet high. What will be
    15·1 answer
  • If hector is 8years old and mary is 3 years old,how old will mary be when hector is 16
    15·1 answer
  • <img src="https://tex.z-dn.net/?f=1%20%5Cdiv%201%20%2B%20a%20%20%7Bl%7D%20-%20%7Bm%7D%20%20%2B%201%20%5Cdiv%201%20%2B%20%20%7Bm%
    6·1 answer
  • Write an equation in slope-intercept form for the line with slope -2/5 and y intercept 5.
    13·1 answer
  • Choose the correct answer to 97 ÷ 4.<br> 24 R1<br> 24<br> 23 R5<br> 24 R3
    10·2 answers
  • Your answer should be a polynomial in standard form. -t(-4t^3+8t^2)=
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!