1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crazy boy [7]
3 years ago
9

The amount of time that a certain type of battery functions is a random variable with mean 5

Mathematics
1 answer:
TEA [102]3 years ago
5 0
Hello! This is not a full question so no one can answer. Please put proper question for help. Thank you!
You might be interested in
14-
Vaselesa [24]

Answer: You need 27 more dollars.

Step-by-step explanation: This is because for this problem, you need to subtract 65 from 38 to get 27

4 0
3 years ago
Please help due tomorrow
icang [17]

Answer:

Here's What you do:

  1. Draw a line that comes straight through the middle
  2. It has to create 4 - 90° angles (use a protractor to measure)

There's a picture attached on how a perpendicular lines should look like.

Step-by-step explanation:

If my answer is incorrect, pls correct me!

If you like my answer and explanation, mark me as brainliest!

-Chetan K

4 0
3 years ago
What is 12 times 2 times 5 plus 2​
Vsevolod [243]

Answer:

122

Step-by-step explanation:

12 times 2 times 5 plus 2 gets rewritten as

(12)(2)(5) + 2

Follow PEMDAS and do multiplication first.  From left to right...

 24(5) + 2                      {   (12)(2) = 24   }

   120 + 2                        {  (24)(5) = 120   }

  122                               {   120 + 2 = 122   }

8 0
3 years ago
Read 2 more answers
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x4 ln(x) (a) Find the interval on which f is incre
Ainat [17]

Answer: (a) Interval where f is increasing: (0.78,+∞);

Interval where f is decreasing: (0,0.78);

(b) Local minimum: (0.78, - 0.09)

(c) Inflection point: (0.56,-0.06)

Interval concave up: (0.56,+∞)

Interval concave down: (0,0.56)

Step-by-step explanation:

(a) To determine the interval where function f is increasing or decreasing, first derive the function:

f'(x) = \frac{d}{dx}[x^{4}ln(x)]

Using the product rule of derivative, which is: [u(x).v(x)]' = u'(x)v(x) + u(x).v'(x),

you have:

f'(x) = 4x^{3}ln(x) + x_{4}.\frac{1}{x}

f'(x) = 4x^{3}ln(x) + x^{3}

f'(x) = x^{3}[4ln(x) + 1]

Now, find the critical points: f'(x) = 0

x^{3}[4ln(x) + 1] = 0

x^{3} = 0

x = 0

and

4ln(x) + 1 = 0

ln(x) = \frac{-1}{4}

x = e^{\frac{-1}{4} }

x = 0.78

To determine the interval where f(x) is positive (increasing) or negative (decreasing), evaluate the function at each interval:

interval                 x-value                      f'(x)                       result

0<x<0.78                 0.5                 f'(0.5) = -0.22            decreasing

x>0.78                       1                         f'(1) = 1                  increasing

With the table, it can be concluded that in the interval (0,0.78) the function is decreasing while in the interval (0.78, +∞), f is increasing.

Note: As it is a natural logarithm function, there are no negative x-values.

(b) A extremum point (maximum or minimum) is found where f is defined and f' changes signs. In this case:

  • Between 0 and 0.78, the function decreases and at point and it is defined at point 0.78;
  • After 0.78, it increase (has a change of sign) and f is also defined;

Then, x=0.78 is a point of minimum and its y-value is:

f(x) = x^{4}ln(x)

f(0.78) = 0.78^{4}ln(0.78)

f(0.78) = - 0.092

The point of <u>minimum</u> is (0.78, - 0.092)

(c) To determine the inflection point (IP), calculate the second derivative of the function and solve for x:

f"(x) = \frac{d^{2}}{dx^{2}} [x^{3}[4ln(x) + 1]]

f"(x) = 3x^{2}[4ln(x) + 1] + 4x^{2}

f"(x) = x^{2}[12ln(x) + 7]

x^{2}[12ln(x) + 7] = 0

x^{2} = 0\\x = 0

and

12ln(x) + 7 = 0\\ln(x) = \frac{-7}{12} \\x = e^{\frac{-7}{12} }\\x = 0.56

Substituing x in the function:

f(x) = x^{4}ln(x)

f(0.56) = 0.56^{4} ln(0.56)

f(0.56) = - 0.06

The <u>inflection point</u> will be: (0.56, - 0.06)

In a function, the concave is down when f"(x) < 0 and up when f"(x) > 0, adn knowing that the critical points for that derivative are 0 and 0.56:

f"(x) =  x^{2}[12ln(x) + 7]

f"(0.1) = 0.1^{2}[12ln(0.1)+7]

f"(0.1) = - 0.21, i.e. <u>Concave</u> is <u>DOWN.</u>

f"(0.7) = 0.7^{2}[12ln(0.7)+7]

f"(0.7) = + 1.33, i.e. <u>Concave</u> is <u>UP.</u>

4 0
3 years ago
Write an equation of the line that passes through the points (1, 2) and (-2, 5)
igor_vitrenko [27]

Answer:

y=-1x+3

y-2=3(x-1)

Step-by-step explanation:

Slope: -1

y-intercept: 3

5 0
3 years ago
Other questions:
  • Ralph sold brownies for ​$0.66 a piece in order to earn money to buy baseball cards. If the cards cost ​$0.90 per​ pack, and if
    15·1 answer
  • 7 friends have a similar cell phone plans. The price of each plan is $x. 3 of 7 friends pay an extra $4 per month for unlimited
    12·1 answer
  • The price of an 8-minute phone call is $1.20. What is the price of a 17-minute phone call?
    11·1 answer
  • A book contains 27 pages with print, 8 pages with print and pictures, and 3 blank
    10·1 answer
  • A point P is located in a two dimensional cartesian coordinate system at x = 4.3 cm &amp; y = 3.6 cm. Calculate the angle in deg
    10·1 answer
  • Which equation, in slope-intercept form, represents the relationship shown in this table?
    11·1 answer
  • The shape above is made of cubes. How many total cubes make up the shape?
    11·2 answers
  • Express the polynomial 7x + 3x + 5 in standard form
    15·1 answer
  • Pls help^^^^^^^^^^^^^
    12·1 answer
  • REAL ANSWER FOR BOTH OF THEM PLEASE THERES MORE POINTS ON THIS ONE
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!