Here is the correct format for the question.
. Then find the solution that satisfies ![x \limits ^{\to} = \left[\begin{array}{c}0\\1\\-2\end{array}\right]](https://tex.z-dn.net/?f=x%20%5Climits%20%5E%7B%5Cto%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C1%5C%5C-2%5Cend%7Barray%7D%5Cright%5D)
Answer:

Step-by-step explanation:
From the figures given above:
the matrix can be computed as,
![\left[\begin{array}{ccc}7&4&12\\1&2&1\\-3&-2&-5\end{array}\right] x \limits ^{\to} = \left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right] = x \limits ^{\to} = \left[\begin{array}{c}x_1'\\x_2'\\x_3'\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%264%2612%5C%5C1%262%261%5C%5C-3%26-2%26-5%5Cend%7Barray%7D%5Cright%5D%20x%20%5Climits%20%5E%7B%5Cto%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%5C%5Cx_2%5C%5Cx_3%5Cend%7Barray%7D%5Cright%5D%20%3D%20x%20%5Climits%20%5E%7B%5Cto%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%27%5C%5Cx_2%27%5C%5Cx_3%27%5Cend%7Barray%7D%5Cright%5D)
The first thing we need to carry out is to determine the eigenvalues of A,
where:
![A = \left[\begin{array}{ccc}7&4&12\\1&2&1\\-3&-2&-5\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%264%2612%5C%5C1%262%261%5C%5C-3%26-2%26-5%5Cend%7Barray%7D%5Cright%5D)


the eigenvalues are r = 0, 1, 3
However, the eigenvector correlated to each eigenvalue can be calculated as follows.
suppose r = 0
(A - rI) x = 0
![\left[\begin{array}{ccc}7&4&12\\1&2&1\\-3&-2&-5\end{array}\right] \left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right] = \left[\begin{array}{c}0\\0\\0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%264%2612%5C%5C1%262%261%5C%5C-3%26-2%26-5%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%5C%5Cx_2%5C%5Cx_3%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
now the eigenvector is ![\left[\begin{array}{c}-4\\1\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-4%5C%5C1%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
However, for eigenvalue = 1, we have : ![\left[\begin{array}{c}-4\\1\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-4%5C%5C1%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
for eigenvalue = 3, we have:![\left[\begin{array}{c}-2\\-1\\1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-2%5C%5C-1%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
The solution now can be computed as :
![x(t)= c_1 \left[\begin{array}{c}-4\\1\\2\end{array}\right] + c_2e^t \left[\begin{array}{c}-4\\3\\1\end{array}\right]+ c_3e^{3t} \left[\begin{array}{c}-2\\-1\\1\end{array}\right]](https://tex.z-dn.net/?f=x%28t%29%3D%20%20c_1%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-4%5C%5C1%5C%5C2%5Cend%7Barray%7D%5Cright%5D%20%2B%20c_2e%5Et%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-4%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%2B%20c_3e%5E%7B3t%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-2%5C%5C-1%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
Similarly, the fundamental matrix solution is:
![\left[\begin{array}{ccc}-4&-4e^t&-2e^{3t}\\1&3e^t&-e^{3t}\\2&e^t&e^{3t}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26-4e%5Et%26-2e%5E%7B3t%7D%5C%5C1%263e%5Et%26-e%5E%7B3t%7D%5C%5C2%26e%5Et%26e%5E%7B3t%7D%5Cend%7Barray%7D%5Cright%5D)

Solving the above equation, we get:
