1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vova2212 [387]
3 years ago
10

Find the value of the unknown angles in each figure.HELPPP​

Mathematics
1 answer:
Usimov [2.4K]3 years ago
4 0

Answer:

To determine to measure of the unknown angle, be sure to use the total sum of 180°. If two angles are given, add them together and then subtract from 180°. If two angles are the same and unknown, subtract the known angle from 180° and then divide by 2.

Step-by-step explanation:

You might be interested in
A total of 336 tickets were sold for the school play. They were either adult tickets or student tickets. The number of student t
wolverine [178]

Let x = number of adult tickets

Let 2x = number of student tickets.


So, x + 2x = 336

3x = 336

x = 112


They sold 112 adult tickets.

8 0
3 years ago
Read 2 more answers
How would you solve this? help.
Eddi Din [679]

Answer:

<em>Center: (3,3)</em>

<em>Radius: </em>2\sqrt{5}<em />

Step-by-step explanation:

<u>Midpoint and Distance Between two Points</u>

Given two points A(x1,y1) and B(x2,y2), the midpoint M(xm,ym) between A and B has the following coordinates:

\displaystyle x_m=\frac{x_1+x_2}{2}

\displaystyle y_m=\frac{y_1+y_2}{2}

The distance between both points is given by:

d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Point (5,7) is the center of circle A, and point (1,-1) is the center of the circle B. Given both points belong to circle C, the center of C must be the midpoint from A to B:

\displaystyle x_m=\frac{5+1}{2}=\frac{6}{2}=3

\displaystyle y_m=\frac{7-1}{2}=\frac{6}{2}=3

Center of circle C: (3,3)

The radius of C is half the distance between A and B:

d=\sqrt{(1-5)^2+(-1-7)^2}

d=\sqrt{16+64}=\sqrt{80}=\sqrt{16*5}=4\sqrt{5}

The radius of C is d/2:

r =4\sqrt{5}/2 = 2\sqrt{5}

Center: (3,3)

Radius: 2\sqrt{5}

8 0
3 years ago
Solve for q 2/3=-1/3q
tensa zangetsu [6.8K]
Q in (-oo:+oo)

2/3 = (1/3)*q // - (1/3)*q
                                                                  
2/3-((1/3)*q) = 0                                             
                                                                       ddddddddd
                                                                       d              d      
                                                                       d              d
(-1/3)*q+2/3 = 0                                              d              d
                                                                       d              d
2/3-1/3*q = 0 // - 2/3                                       d              d
                                                                       d              d
-1/3*q = -2/3 // : -1/3                                       d              d
                                                                       d              d
q = -2/3/(-1/3)                                    ddddddd               dddddddd     
                                                     dd                                               dd
q = 2                                            dd                                                 dd
                                                    dd                   dddd                      dd
q = 2                                              dddddddddd          dddddddddddd
6 0
3 years ago
Which choice is equivalent to the expression below when y2 0?<br> √y^2 + √16y^3 – 4y√y
DanielleElmas [232]

Answer:

Option C.

Step-by-step explanation:

We start with the expression:

\sqrt{y^3}  + \sqrt{16*y^3} - 4*y\sqrt{y}

where y > 0. (this allow us to have y inside a square root, so we don't mess with complex numbers)

We want to find the equivalent expression to this one.

Here, we can do the next two simplifications:

\sqrt{16*y^3} = \sqrt{16} \sqrt{y^3} = 4*\sqrt{y^3}

And:

y*\sqrt{y} = \sqrt{y^2} *\sqrt{y} = \sqrt{y^2*y} = \sqrt{y^3}

If we apply these two to our initial expression, we can rewrite it as:

\sqrt{y^3}  + \sqrt{16*y^3} - 4*y\sqrt{y}

\sqrt{y^3}  + 4*\sqrt{y^3} - 4\sqrt{y^3} = \sqrt{y^3}

Here we can use the second simplification again, to rewrite:

\sqrt{y^3} = y*\sqrt{y}

So, concluding, we have:

\sqrt{y^3}  + \sqrt{16*y^3} - 4*y\sqrt{y} = y*\sqrt{y}

Then the correct option is C.

8 0
3 years ago
Which equation can be used to find t, the total amount Ryan will earn after mowing n lawns?!
motikmotik

Answer:

N(20) = T

Step-by-step explanation:

N = Amount of lawns

20 = payment per lawn

T= payment after N lawns

Lets say there were 2 lawns

2(20)=T

40$ for 2 lawns

7 0
3 years ago
Other questions:
  • Find the value of the expression.<br> b2 − a <br> for a = 4 and b = 5
    11·2 answers
  • The measures of two angles of a triangle are 61 and 84 degrees. Find the measure of the third angle.
    15·2 answers
  • Is the ordered pair, in the form (x, y), a solution of the equation below?
    9·1 answer
  • The sum of two numbers is 170, and their difference is 110. Which is the greater of the two numbers?
    7·2 answers
  • Hannah is participating in a marathon. She can run 4 miles in 50 minutes. At this rate, how long will it take Hannah to run 30 m
    5·1 answer
  • Tess left her home and drove for 3.7 hours due north at a rate of 60 miles per hour. After attending a concert, she drove due so
    7·1 answer
  • Factors of 9 simple question ​
    5·1 answer
  • Math problem. I need help plz.
    14·2 answers
  • A biologist was doing an experiment with plants. The shortest plant measured 13 feet. The tallest plant measured 1.45 feet. Drag
    15·1 answer
  • State the value of 'x' in this equation, and explain why you know this to be true without doing any calculations.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!