By definition of <em>surface</em> area and the <em>area</em> formulae for squares and rectangles, the <em>surface</em> area of the <em>composite</em> figure is equal to 166 square centimeters.
<h3>What is the surface area of a composite figure formed by two right prisms?</h3>
According to the image, we have a <em>composite</em> figure formed by two <em>right</em> prisms. The <em>surface</em> area of this figure is the sum of the areas of its faces, represented by squares and rectangles:
A = 2 · (4 cm) · (5 cm) + 2 · (2 cm) · (4 cm) + (2 cm) · (5 cm) + (3 cm) · (5 cm) + (5 cm)² + 4 · (3 cm) · (5 cm)
A = 166 cm²
By definition of <em>surface</em> area and the <em>area</em> formulae for squares and rectangles, the <em>surface</em> area of the <em>composite</em> figure is equal to 166 square centimeters.
To learn more on surface areas: brainly.com/question/2835293
#SPJ1
Dividing by 5 is equivalent to dividing by 10 and then multiplying by 2.
therefore:
63.5/5 = (63.5/10) * 2 = 6.35 * 2 =12.70 which rounds to 13.
Answer:
3.5
Step-by-step explanation:
-14/-4 = 3.5
Answer:
8
Step-by-step explanation:
Simplify the expression.
The answer is true. A conditional probability is a measure
of the probability of an event given that (by assumption, presumption,
assertion or evidence) another event has occurred. If the event of interest is
A and the event B is known or assumed to have occurred, "the conditional
probability of A given B", or "the probability of A in the condition
B", is usually written as P (A|B). The conditional probability of A given
B is well-defined as the quotient of the probability of the joint of events A
and B, and the probability of B.