The in is -5 the out for 7 is -21 the out for -3 is 9the infor 15 is -5 the out for -10 is 30
Answer:
2b+t/2=a
Step-by-step explanation:
3a + 4b = 5a-t
-3a -3a
4b = 2a - t
+t +t
4b + t = 2a
/2 /2
2b+t/2=a
If f(x) is given with points (0,5) and (4,3), it can be easily plotted in a coordinate system (see .jpeg image in attachment).If g(x) is a function defined by text:
Kyle started the summer having read 3 books but plans to read 6 books per month over the summer.Then, g(x) is given with:
g(x) = 6*x+3 (3 books read already, and 6 books will be read each month).h(x) is already given with:
h(x)=3*x+4
These all three functions are plotted in coordinate system and it can be seen that the lowest y-intercept has function g(x), and it is the value of 3 on y-axis. Others have 4 (h(x)) and 5 (f(x)).
Answer:
- h = -16t^2 + 73t + 5
- h = -16t^2 + 5
- h = -4.9t^2 + 73t + 1.5
- h = -4.9t^2 + 1.5
Step-by-step explanation:
The general equation we use for ballistic motion is ...

where g is the acceleration due to gravity, v₀ is the initial upward velocity, and h₀ is the initial height.
The values of g commonly used are -32 ft/s², or -4.9 m/s². Units are consistent when the former is used with velocity in ft/s and height in feet. The latter is used when velocity is in m/s, and height is in meters.
_____
Dwayne throws a ball with an initial velocity of 73 feet/second. Dwayne holds the ball 5 feet off the ground before throwing it. (h = -16t^2 + 73t + 5)
A watermelon falls from a height of 5 feet to splatter on the ground below. (h = -16t^2 + 5)
Marcella shoots a foam dart at a target. She holds the dart gun 1.5 meters off the ground before firing. The dart leaves the gun traveling 73 meters/second. (h = -4.9t^2 + 73t + 1.5)
Greg drops a life raft off the side of a boat 1.5 meters above the water. (h = -4.9t^2 + 1.5)
_____
<em>Additional comment on these scenarios</em>
The dart and ball are described as being launched at 73 units per second. Generally, we expect launches of these kinds of objects to have a significant horizontal component. However, these equations are only for <em>vertical</em> motion, so we must assume the launches are <em>straight up</em> (or that the up-directed component of motion is 73 units/second).
What kind of problems or what are you trying to ask?