Answer:
Firstly, from the diagram we are given that the length of XB is congruent to BZ, and YC is congruent to CZ. Based on this information, we know that B is the midpoint of XZ, and C is the midpoint of YZ. This means that BC connects the midpoints of segments XZ and YZ. Now that we know this, we can use the Triangle Midsegment Theorem to calculate the length of BC. This theorem states that if a segment connects the midpoints of two sides of a triangle, then the segment is equal to one-half the length of the third side. In this scenario, the third side would be XY, which has a length of 12 units. Therefore, the length of BC = 1/2(XY), and we can substitute the value of XY and solve this equation:
BC = 1/2(XY)
BC = 1/2(12)
BC = 6
Step-by-step explanation:
Please support my answer.
To solve this problem we must know that when any two lines intersect , a pair of opposite angles from the figure Will be equal
so that means that

we can subtract twenty from each side


now we can subtract like terms

so we can get the final answer as
Answer:
12
Step-by-step explanation:
1:2:4
let josh=1x
james=2x
john=4x
josh has nine sweets less than john
4x-1x=9
3x=9
x=3
john's sweet=4x
4(3)=12
Answer:
the best way to solve this is to have graph paper, so your numbers and points align. I have a model attached. the first point is hours slept 8. so on your graph go to 8 then across to 83, which is the test score. make a mark to represent this point. do this for all and it will create a line
Answer:
8 * (7 + 4)
See process below
Step-by-step explanation:
We start by writing each number in PRIME factor form:
56 = 2 * 2 * 2 * 7
32 = 2 * 2 * 2 * 2 * 2
Notice that the factors that are common to BOTH numbers are 2 * 2 * 2 (the product of three factors of 2).Therefore we see that the greatest common factor for the given numbers is : 2 * 2 * 2 = 8
Using this, we can write the two numbers as the product of this common factor (8) times the factors that are left on each:
56 = 8 * 7
32 = 8 * 2 * 2 = 8 * 4
We can then use distributive property to "extract" that common factor (8) from the given addition as shown below:
56 + 32
8 * 7 + 8 * 4
8 * (7 + 4)
8 * (11)
88