The distance between two points knowing theirs coordinates:
AB =√[(x₂-x₁)² +(y₂-y₁)²]; ===>A(-2,4) & B(0,-6) Given
A(x₁,y₁) & B(y₂,y₁)
AB =√[(0-(-2))²+(-6-4)²] =√(104) = 10.198 ≈ 10.2
Answer:
Below.
Step-by-step explanation:
So let's do this Divide both sides.
equals to,
y+2>2
Cancel out equal terms.
y>0.
Let, the length be l and breadth be b.
So, 2(l + b) = 26
Or, l + b = 13
Or, l = 13 - b
So, we may write like this,
Area = l * b
Or, l * b > 30
Or, l (13 - l) > 30
Or, 13l - l^2 > 30
Or, l^2 - 13l + 30 > 0
Or, l^2 - 3l - 10l + 30 > 0
Or, l(l - 3) - 10(l - 3) > 0
Or, (l - 3)(l - 7) > 0
Or, l - 7 > 0
Or, l > 7.
Now, putting the value of l,
We get, l * b > 30
Or, 7 * b > 30
Or, b > 30/7
➡️ Therefore, we get,
Length > 7
Breadth > 30/7
That's it..
Answer: c
Step-by-step explanation: now mark brainlist please :)
Sqrt((y2-y1)^2)+(x2-x1)^2)