Hello from MrBillDoesMath!
Answer:
8(v+3) ( -1/2 (sqrt(14) - 4 v) (4 v + sqrt(14)) )
Discussion:
Given
64v^3 + 192v^2 - 56 v - 168
Factor 64v^2 from the first two terms. Factor 56 from the last two terms:
64v^2(v+3) - 56(v + 3) => factor (v+3) from both terms
(v+3) (64v^2 - 56) => factor 8 from both terms in the right ()
8(v+3)(8v^2-7) => factor 8y^2-7
8(v+3) ( -1/2 (sqrt(14) - 4 v) (4 v + sqrt(14)) )
Thank you,
MrB
Answer:
Step-by-step explanation:
Directions
- Draw a circle
- Dear a chord with a length of 24 inside the circle. You just have to label it as 24
- Draw a radius that is perpendicular and a bisector through the chord
- Draw a radius that is from the center of the circle to one end of the chord.
- Label where the perpendicular radius to the chord intersect. Call it E.
- You should get something that looks like the diagram below. The only thing you have to do is put in the point E which is the midpoint of CB.
Givens
AC = 13 inches Given
CB = 24 inches Given
CE = 12 inches Construction and property of a midpoint.
So what we have now is a right triangle (ACE) with the right angle at E.
What we seek is AE
Formula
AC^2 = CE^2 + AE^2
13^2 = 12^2 + AE^2
169 = 144 + AE^2 Subtract 144 from both sides.
169 - 144 = 144-144 + AE^2 Combine
25 = AE^2 Take the square root of both sides
√25 = √AE^2
5 = AE
Answer
The 24 inch chord is 5 inches from the center of the circle.
Answer:
w-6b+4/6
Step-by-step explanation:
To get the answer you have to first open the bracket which will give you w=6a+6b-4.You then take 6b-4 to the other side to meet w after this divide all by 6 to make a the subject of the formula.
Answer:
3/4
Step-by-step explanation:
sin^2(240°)
=sin^2(360-120)
=sin^2(-120)
={-sin^2(120)}
=(-
=3/4