Answer:
1/12
THIS DESERVES BRAINLISTTT
Step-by-step explanation:
There are 12 possible outcomes, 6 for the die for each of the 2 for the coin. Only one comprises a 5 and a tail so the probability, assuming a fair coin and die, is 1/12.
Answer:
Explanation:
The table that shows the pattern for this question is:
Time (year) Population
0 40
1 62
2 96
3 149
4 231
A growing exponentially pattern may be modeled by a function of the form P(x) = P₀(r)ˣ.
Where P₀ represents the initial population (year = 0), r represents the multiplicative growing rate, and P(x0 represents the population at the year x.
Thus you must find both P₀ and r.
<u>1) P₀ </u>
Using the first term of the sequence (0, 40) you get:
P(0) = 40 = P₀ (r)⁰ = P₀ (1) = P₀
Then, P₀ = 40
<u> 2) r</u>
Take two consecutive terms of the sequence:
- P(1) / P(0) = 40r / 40 = 62/40
You can verify that, for any other two consecutive terms you get the same result: 96/62 ≈ 149/96 ≈ 231/149 ≈ 1.55
<u>3) Model</u>
Thus, your model is P(x) = 40(1.55)ˣ
<u> 4) Population of moose after 12 years</u>
- P(12) = 40 (1.55)¹² ≈ 7,692.019 ≈ 7,692, which is round to the nearest whole number.
Answer:
B. 103°
Step-by-step explanation:
Supplementary angles add up to 180°, so we can find the measure of angle 2 by subtracting 77 from 180
180 - 77
= 103
So, m∠2 is 103°
To determine the number of days that an employee work in a week, we simply use dimensional analysis and multiplying the number of works per week with the number of weeks in total for a year. That is,
employee works = (5 days per week)(49 weeks per year)
=245 days
The given equation is
We need to solve the equation for q.
<u>Value of q:</u>
The value of q can be determined by solving the equation
for q.
Thus, subtracting both sides of the equation by r, we get;

Now, dividing both sides of the equation by b, we have;

Simplifying the terms, we get;

Therefore, the value of q is 
Hence, Option B is the correct answer.