1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stealth61 [152]
3 years ago
9

Solve the equation on the interval [0,2pi] 5sec(x)+7=-3

Mathematics
2 answers:
vovangra [49]3 years ago
8 0

Answer:

Hello,

x\in \bigg\{\dfrac{2\pi}{3} ,\dfrac{4\pi}{3}\bigg\}\\

Step-by-step explanation:

5*sec(x)+7=-3\\\\sec(x)=\dfrac{-10}{5} \\\\\dfrac{1}{cos(x)} =-2\\\\cos(x)=-\dfrac{1}{2} \\\\x=120^o\ or\ x=240^o\\

Alex17521 [72]3 years ago
3 0

Answer:

\sf \boxed{\sf x = \dfrac{2\pi}{3},\dfrac{4\pi}{3}}

Step-by-step explanation:

A trigonometric equation is given to us , and we need to find the solutions of the equation within the interval [ 0,2π ]

The given equation is ,

\sf\longrightarrow 5 sec\  x +7 = -3

Add -7 to both sides ,

\sf\longrightarrow 5sec\ x = -10

Divide both sides by 5 ,

\sf\longrightarrow sec \ x =\dfrac{-10}{5}

Simplify ,

\sf\longrightarrow sec \ x =-2

Now solve for x ,

\sf\longrightarrow x = sec^{-1}(-2)

Simplify ,

\sf\longrightarrow x = \dfrac{2\pi}{3}

The secant function is <u>negative in the second and third quadrants. </u> Subtracting the reference angle from <u>2</u><u>π</u><u> </u> to find the solution in the third quadrant to find the solution second solution.

\sf\longrightarrow x = 2\pi -\dfrac{2\pi}{3}

Simplify ,

\sf\longrightarrow x = \dfrac{4\pi}{3}

Now here the period of sec x is <u>2</u><u>π</u> . Therefore ,

\sf\longrightarrow x = \dfrac{2\pi}{3} +2\pi n , \dfrac{4\pi}{3}+2\pi n , \textsf{ for any integer n } .

Therefore all the possible solutions are ,

\sf\longrightarrow \boxed{\blue{\sf x = \dfrac{2\pi}{3},\dfrac{4\pi}{3}}}

<u>Hence</u><u> the</u><u> </u><u>required</u><u> </u><u>answer</u><u> </u><u>is </u><u>2</u><u>π</u><u>/</u><u>3 </u><u>and </u><u>4</u><u>π</u><u>/</u><u>3.</u>

You might be interested in
|. Identify the following Pōints of each values.Write your ans
Dmitry_Shevchenko [17]
<h2>✒️VALUE</h2>

\\ \quad  \begin{array}{c} \qquad \bold{Distance \: \green{ Formula:}}\qquad\\ \\ \boldsymbol{ \tt d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \end{array}\\  \begin{array}{l} \\ 1.)\: \bold{Given:}\: \begin{cases}\tt D(- 5,6), E(2.-1),\textsf{ and }F(x,0) \\ \tt DF = EF \end{cases} \\ \\  \qquad\bold{Required:}\:\textsf{ value of }x \\ \\ \qquad \textsf{Solving for }x, \\ \\  \tt  \qquad DF = EF \\ \\  \implies\small \tt{\sqrt{(x -(- 5))^2 + (0 - 6)^2} = \sqrt{(x - 2)^2 + (0 - (-1))^2}} \\ \\   \implies\tt\sqrt{(x + 5)^2 + 36 } = \sqrt{(x - 2)^2 + 1 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies\tt (x + 5)^2 + 36 = (x - 2)^2 + 1 \\ \\  \implies\tt x^2 + 10x + 25 + 36 = x^2 - 4x + 4 + 1 \\ \\ \implies \tt x^2 + 10x + 61 = x^2 - 4x + 5 \\ \\   \implies\tt10x + 4x = 5 - 61 \\ \\   \implies\tt14x = -56 \\ \\  \implies \red{\boxed{\tt x = -4}}\end{array}  \\  \\  \\  \\\begin{array}{l} \\ 2.)\: \bold{Given:}\: \begin{cases}\tt P(6,-1), Q(-4,-3),\textsf{ and }R(0,y) \\ \tt PR = QR \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }y \\ \\  \qquad\textsf{Solving for }y, \\ \\  \qquad\tt PR = QR \\ \\  \implies \tt\small{\sqrt{(0 - 6)^2 + (y - (-1))^2} = \sqrt{(0 - (-4))^2 + (y - (-3))^2}} \\ \\   \implies\tt\sqrt{36 + (y + 1)^2} = \sqrt{16 + (y + 3)^2 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies \tt \: 36 + (y + 1)^2 = 16 + (y + 3)^2 \\ \\  \implies\tt 36 + y^2 + 2y + 1 = 16 + y^2 + 6y + 9 \\ \\  \implies \tt \: y^2 + 2y + 37 = y^2 + 6y + 25 \\ \\  \implies \tt \: 2y - 6y = 25 - 37 \\ \\ \implies \tt -4y = -12 \\ \\   \implies\red{\boxed{ \tt y = 3}} \end{array}  \\  \\  \\ \begin{array}{l} \\ 3.)\: \bold{Given:}\: \begin{cases}\: A(4,5), B(-3,2),\textsf{ and }C(x,0) \\ \: AC = BC \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }x \\ \\  \qquad\textsf{Solving for }x, \\ \\   \qquad\tt AC = BC \\ \\ \implies\tt\small{\sqrt{(x - 4)^2 + (0 - 5)^2} = \sqrt{(x - (-3))^2 + (0 - 2)^2}} \\ \\ \implies\tt\sqrt{(x - 4)^2 + 25} = \sqrt{(x + 3)^2 + 4} \\ \\ \textsf{Squaring both sides yields} \\ \\ \implies\tt\:(x - 4)^2 + 25 = (x + 3)^2 + 4 \\ \\ \implies\tt\:x^2 - 8x + 16 + 25 = x^2 + 6x + 9 + 4 \\ \\ \implies\tt\:x^2 - 8x + 41 = x^2 + 6x + 13 \\ \\ \implies\tt-8x - 6x = 13 - 41 \\ \\\implies\tt -14x = -28 \\ \\ \implies\red{\boxed{\tt\:x = 2}} \end{array}

#CarryOnLearning

#BrainlyMathKnower

#5-MinutesAnswer

7 0
2 years ago
When 7/8x^2-3/4 x is subtracted from 5/8x^2-1/4x+2 the difference is?
artcher [175]
7/8x²-3/4x - 5/8x²-1/4x+2

x²/4-x+2
4 0
3 years ago
Read 2 more answers
Which line is perpendicular to a line that has a slope of 1/2​
siniylev [52]
Line FG is the answer
6 0
3 years ago
Read 2 more answers
Find the product. <br><br> (6a + b) 2
I am Lyosha [343]
I think it is 36^2+12ab+b^2
8 0
3 years ago
Please help me I am stuck
Mice21 [21]
The answer is 56 inches squared. 
3 0
3 years ago
Other questions:
  • What is the measure of RST?
    9·2 answers
  • The hull speed of a boat is approximated by the
    7·2 answers
  • Erica keeps her buttons in a container the shape of a cube. She want to paint each face a different color. How many colors does
    11·1 answer
  • Last month, Ed ate 9 apples, 5 bananas, 4 peaches, and 7 oranges. Find the ratio of the bananas to the total number of fruit, th
    7·1 answer
  • Y is directly proportional to x, and y=56 when x=7. find the value of y when x=4.
    9·1 answer
  • How much trail mix will each person get if 5 people share 1/2 pound of trail mix?
    6·1 answer
  • A pair of dice is rolled. What is the probability of getting a sum of 6?
    7·1 answer
  • Write an expression to represent: the product of 5 and a number decreased by 3.
    6·1 answer
  • Help i will mark you as brain thing or whatever ​
    15·1 answer
  • Solve for x. x+(−5.3)=−3.86
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!