Answer:
0.18 ; 0.1875 ; No
Step-by-step explanation:
Let:
Person making the order = P
Other person = O
Gift wrapping = w
P(p) = 0.7 ; P(O) = 0.3 ; p(w|O) = 0.60 ; P(w|P) = 0.10
What is the probability that a randomly selected order will be a gift wrapped and sent to a person other than the person making the order?
Using the relation :
P(W|O) = P(WnO) / P(O)
P(WnO) = P(W|O) * P(O)
P(WnO) = 0.60 * 0.3 = 0.18
b. What is the probability that a randomly selected order will be gift wrapped?
P(W) = P(W|O) * P(O) + P(W|P) * P(P)
P(W) = (0.60 * 0.3) + (0.1 * 0.7)
P(W) = 0.18 + 0.07
P(W) = 0.1875
c. Is gift wrapping independent of the destination of the gifts? Justify your response statistically
No.
For independent events the occurrence of A does not impact the occurrence if the other.
Answer:
100 ounces(hope it help)
Step-by-step explanation:
because there is only 100 ounces in the jar.
Answer:
Step-by-step explanation:
y > (1/3)x + 4 has an infinite number of solutions. Draw a dashed line representing y = (1/3)x + 4 and then pick points at random on either side of this line. For example, pick (1, 6). Substitute 1 for x in y > (1/3)x + 4 and 6 for y. Is the resulting inequality true? Is 6 > (1/3)(1) + 4 true? YES. So we know that (1, 6) is a solution of y > (1/3)x + 4. Because (1, 6) lies ABOVE the line y = (1/3)x + 4, we can conclude that all points abovve this line are solutions.
Answer:
A) 2
Step-by-step explanation:
Start off with the given information. The question states that the x-int. is 4, so you should recognize that there is a point at (4,0). Plug the point into the equation.
k(4) + 2(0) + 8 = 0
Now simplify the equation.
4k + 0 + 8 = 0
Isolate the variable, make sure it's on its own side.
4k = 8
Now get the k by itself to solve the equation. Divide both sides by 4.
k = 2