The basics would be that you'd need to find out if they could exchange genetic information. If not, they couldn't be considered part of one species. Set-up 2 artificial environments so both groups would produce pollen at the same time. Fertilise both plants with the other's pollen. Then fertilise the plants with pollen from their own group.
Count the number of offspring each plant produces.
If the plants which were fertilised by the opposite group produce offspring, they are of the same species. You can then take this further if they are of the same species by analysing if there is any difference between the number (and health) of offspring produced by the crossed progeny and by the pure progeny. You'd have to take into account that some of them would want to grow at different times, so a study of the progeny from their first sprout until death (whilst emulating the seasons in your ideal controlled environment). Their success could then be compared to that of the pure-bred individuals.
Make sure to repeat this a few times, or have a number of plants to make sure your results are accurate.
Or if you couldn't do the controlled environment thing, just keep some pollen one year and use it to fertilise the other group.
I'd also put a hypothesis in there somewhere too.
The independent variable would be the number of plants pollinated. The dependant variable would be the number of progeny (offspring) produced.
Answer:
The answer to your question is: letter C
Explanation:
From the graph, we can conclude that catalase has a low activity at low temperatures. Activity increases a little at 30°C and this process is the highest at 40°C, after this temperature, activity disminishes again.
Options:
A. This option is wrong because the number of bubbles at this temperatures is low, maybe the enzyme is already denatured.
B. This answer is wrong, at 30°C the enzyme shows a low activity.
C. This answer is correct because at this temperature the enzyme produces the higher amount of bubbles.
D. The activity of the enzyme at 0°C was not tested.
Arteries are blood vessels responsible for carrying oxygen-rich blood away from the heart to the body. Veins are blood vessels that carry blood low in oxygen from the body back to the heart for reoxygenation. Arteries and veins are two of the body's main type of blood vessels.