Answer:
La familia ha bebido en un día de verano
litros.
Step-by-step explanation:
Podemos evidenciar que es posible obtener el volumen total de los citados líquidos al sumar el volumen de cada uno. El volumen de cada bebida es igual al producto de su capacidad multiplicada por el número de botellas. Es decir:

Donde todos los volúmenes se miden en litros.






La familia ha bebido en un día de verano
litros.
Answer:
95% confidence interval for the mean ARSMA score for first-generation Mexican Americans
(2.13264 , 2.58736)
Step-by-step explanation:
<u><em>Step(i)</em></u>:-
Mean of the Population = 3.0
Standard deviation of the Population = 0.8
Given Mean of the sample(x⁻ ) = 2.36
Standard deviation of the sample (S) = 0.8
size of the sample = 50
Level of significance =0.05
Degrees of freedom = n-1 = 50-1 = 49

<u><em>Step(ii)</em></u>:-
95% confidence interval for the mean ARSMA score for first-generation Mexican Americans


( 2.36 - 0.22736 , 2.36 + 0.22736)
(2.13264 , 2.58736)
<u><em>Final answer</em></u>:-
95% confidence interval for the mean ARSMA score for first-generation Mexican Americans
(2.13264 , 2.58736)
Answer:
Arley should charge $2.25 for each unbroken cookie.
Step-by-step explanation:
1. This problem has a lot of information to take in. To make things easier, it's vital to condense the problem into the most vital information.
Normal Price (x) = $1.50
Markup = %50 (1.5)
Total Price = 1.5x
Note that the amount of cookies produced and the amount charged for the broken cookie was not written in this condensed format.
The question was only: What <u>price</u> should Arley charge for each <u>unbroken cookie?</u>
Neither the cookies produced or the amount charged were part of the question. In this case, the other information is simply there as a filler.
2. With the information given, a simple formula should be created to find the total price.
The formula for this problem is: 1.5x
As stated above, 1.5 represents the 50% markup while the variable (x) represents the normal price.
When 1.5*1.5 is solved, it comes out to $2.25 dollars.
3. The answer is $2.25 dollars for each unbroken cookie.