25m+100−24m−75=68
Step 1: Simplify both sides of the equation.
25m+100−24m−75=68
25m+100+−24m+−75=68
(25m+−24m)+(100+−75)=68(Combine Like Terms)
m+25=68
m+25=68
Step 2: Subtract 25 from both sides.
m+25−25=68−25
m=43
Answer:
m=43
1) Company A and C
2)Your answer is f(t) = 180(0.5)^t This is because the number is cut in half for every hour.
3)C 0 ≤ x ≤ 50 is the right answer because the starting time 9:05 is considered as zero and the 9:55 is the ending point which is considered as 50.Or simply the difference of both the times is the domain of the function.
Both the points have a coordinate where y is -1, so the equation is simply -1
y=-1
however if you wanted to really show the working out, it looks like this:
y=mx+c
m=change in y/change in x
m=(-1-1)/(-5+0)=0
subsitute one of the coordinates into y=mx+c
-1=0+c
c=-1
so then y=-1
Answer:
Rs 120.
Step-by-step explanation:
10=0.85SP-CP; CP+10=0.85SP; SP=[CP+10]/0.85 Eq 1. Let SP= Selling Price and CP= Cost Price
-2 =0.75SP-CP; 0.75SP=C-2; SP=[CP-2]/0.75 Eq 2
[CP+10]/0.85=[CP-2]/0.75 : SP of Eq 1=SP of Eq 2
0.75[CP+10]=0.85[CP-2]
0.75CP+7.5=0.85CP-1.7
0.85CP-0.75CP=-1.7–7.5=9.2
0.10CP=9.2; CP=9.2/0.10
CP=Rs 92 Cost Price of pen
10=0.85SP-92; 0.85SP=92+10=102; SP=102/0.85=Rs 120 Marked Price of pen (answer)
From Eq2: -2=0.75SP-CP; 0.75SP=CP-2=92–2=90; SP=90/0.75=Rs120; -2=0.75(120)-CP; CP-2=0.75(120); CP-2=90; CP=90+2=Rs 92
Set CP of Eq 1=CP of Eq 2:
CP=0.85SP-10 from Eq 1; CP=0.75SP+2 from Eq 2;
0.85SP-10=0.75SP+2; 0.85SP-0.75SP=10+2=12
0.10SP=12; SP=12/0.10=Rs120 is the Marked Price(answer)
Normally, the Selling Price is the marked price. The seller will not disclose the Cost Price because it is the price when the item was acquired or procured, otherwise the buyer will ask for more discounts and based his buying price from the Cost Price if it is known. The calculated SP and CP satisfy both Eq 1 and Eq 2. Both Eq 1 and Eq 2 satisfy the given conditions of the problem above.
Answer:
It can be decomposed into the following simplest shapes:
Two Rectangles and one Triangle.
The area is 
Step-by-step explanation:
You can observe in the picture attached that it can be decomposed into the following simplest shapes:
Two Rectangles.
One Triangle.
The area of the a rectangle can be found with:

Where "l" is the length and "w" is the width.
You can identify in the picture that:

Substituing values, you get that the areas of the rectangles A and B are:

The formula for the area of a triangle is:

Where "b" is the base and "h" is the height.
In this case:

Then, its area is:

Then, the total area of carpet that Valerie needs for her project is:
