Answer:
The answer to your question is: letter A
Step-by-step explanation:
Rules for using scientific notation:
1.- The number before the decimal point must be between 1 and 10.
2.- Determine the exponent
3.- It must be in decimal format, ( x 10)
A 3.8*10^12 This number is in correct scientific notation.
B 33.8* 10 This number is incorrect, because before the decimal point the number must be between 1 and 10.
C 3.8 *20^8 This number is incorrect because the power must be 10 not 20.
By applying algebraic handling on the two equations, we find the following three <em>solution</em> pairs: x₁ ≈ 5.693 ,y₁ ≈ 10.693; x₂ ≈ 1.430, y₂ ≈ 6.430; x₃ ≈ - 0.737, y₃ ≈ 4.263.
<h3>How to solve a system of equations</h3>
In this question we have a system formed by a <em>linear</em> equation and a <em>non-linear</em> equation, both with no <em>trascendent</em> elements and whose solution can be found easily by algebraic handling:
x - y = 5 (1)
x² · y = 5 · x + 6 (2)
By (1):
y = x + 5
By substituting on (2):
x² · (x + 5) = 5 · x + 6
x³ + 5 · x² - 5 · x - 6 = 0
(x + 5.693) · (x - 1.430) · (x + 0.737) = 0
There are three solutions: x₁ ≈ 5.693, x₂ ≈ 1.430, x₃ ≈ - 0.737
And the y-values are found by evaluating on (1):
y = x + 5
x₁ ≈ 5.693
y₁ ≈ 10.693
x₂ ≈ 1.430
y₂ ≈ 6.430
x₃ ≈ - 0.737
y₃ ≈ 4.263
By applying algebraic handling on the two equations, we find the following three <em>solution</em> pairs: x₁ ≈ 5.693 ,y₁ ≈ 10.693; x₂ ≈ 1.430, y₂ ≈ 6.430; x₃ ≈ - 0.737, y₃ ≈ 4.263.
To learn more on nonlinear equations: brainly.com/question/20242917
#SPJ1
Hey there! I'm happy to help!
We have $100.75 to spend.
Each spool costs $3, and we have 24 spools.
3×24=72
Each glue costs $1 and we have 7 packages of glue.
7×1=7
We add up these expenses.
72+7=79
And we subtract from our total amount.
100.75-79=21.75
So, Joanna has $21.75 left after buying these things.
Have a wonderful day and keep on learning! :D
Two<span> trains </span>leave different<span> cities heading toward each </span>other<span> at </span>different<span> speeds. ... At the </span>same time<span>Train B, </span>traveling 60 mph<span>, leaves Eastford heading toward Westford. ... Since an equation remains true as </span>long<span> as we perform the </span>same<span> operation ... that the train's rate is 40 </span>mph<span>, which means it </span>will travel<span> 40 </span>miles<span> in </span>one<span> hour.</span>