1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jok3333 [9.3K]
3 years ago
14

Find the domain and range of the function graphed below.

Mathematics
1 answer:
earnstyle [38]3 years ago
4 0

Answer:

Domain -1 ≤x<2

Range 0 < y ≤4

Step-by-step explanation:

Domain is the input values

X goes from -1 to 2 ( 2 not included)

Domain -1 ≤x<2

Range is the output values

y goes from 0 ( not included) to 4

Range 0 < y ≤4

You might be interested in
Which of the following represents the ratio of the long leg to the short leg in the right triangle shown below
madreJ [45]
D) 2:1 because long leg will be bigger, and small leg will be smaller, e.g. Long Leg(2): Small Leg(1)
6 0
4 years ago
Read 2 more answers
Consider the matrix A. A = 1 0 1 1 0 0 0 0 0 Find the characteristic polynomial for the matrix A. (Write your answer in terms of
dusya [7]

Answer with Step-by-step explanation:

We are given that a matrix

A=\left[\begin{array}{ccc}1&0&1\\1&0&0\\0&0&0\end{array}\right]

a.We have to find characteristic polynomial in terms of A

We know that characteristic equation of given matrix\mid{A-\lambda I}\mid=0

Where I is identity matrix of the order of given matrix

I=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]

Substitute the values then, we get

\begin{vmatrix}1-\lambda&0&1\\1&-\lambda&0\\0&0&-\lambda\end{vmatrix}=0

(1-\lambda)(\lamda^2)-0+0=0

\lambda^2-\lambda^3=0

\lambda^3-\lambda^2=0

Hence, characteristic polynomial =\lambda^3-\lambda^2=0

b.We have to find the eigen value  for given matrix

\lambda^2(1-\lambda)=0

Then , we get \lambda=0,0,1-\lambda=0

\lambda=1

Hence, real eigen values of for the matrix are 0,0 and 1.

c.Eigen space corresponding to eigen value 1 is the null space of matrix A-I

E_1=N(A-I)

A-I=\left[\begin{array}{ccc}0&0&1\\1&-1&0\\0&0&-1\end{array}\right]

Apply R_1\rightarrow R_1+R_3

A-I=\left[\begin{array}{ccc}0&0&1\\1&-1&0\\0&0&0\end{array}\right]

Now,(A-I)x=0[/tex]

Substitute the values then we get

\left[\begin{array}{ccc}0&0&1\\1&-1&0\\0&0&0\end{array}\right]\left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right]=0

Then , we get x_3=0

Andx_1-x_2=0

x_1=x_2

Null space N(A-I) consist of vectors

x=\left[\begin{array}{ccc}x_1\\x_1\\0\end{array}\right]

For any scalar x_1

x=x_1\left[\begin{array}{ccc}1\\1\\0\end{array}\right]

E_1=N(A-I)=Span(\left[\begin{array}{ccc}1\\1\\0\end{array}\right]

Hence, the basis of eigen vector corresponding to eigen value 1 is given by

\left[\begin{array}{ccc}1\\1\\0\end{array}\right]

Eigen space corresponding to 0 eigen value

N(A-0I)=\left[\begin{array}{ccc}1&0&1\\1&0&0\\0&0&0\end{array}\right]

(A-0I)x=0

\left[\begin{array}{ccc}1&0&1\\1&0&0\\0&0&0\end{array}\right]\left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right]=0

\left[\begin{array}{ccc}x_1+x_3\\x_1\\0\end{array}\right]=0

Then, x_1+x_3=0

x_1=0

Substitute x_1=0

Then, we get x_3=0

Therefore, the null space consist of vectors

x=x_2=x_2\left[\begin{array}{ccc}0\\1\\0\end{array}\right]

Therefore, the basis of eigen space corresponding to eigen value 0 is given by

\left[\begin{array}{ccc}0\\1\\0\end{array}\right]

5 0
3 years ago
Help me please! Thank you.
Alex_Xolod [135]

f'(x) = 9+1/x

f'(9) = 9+1/9 = 82/9


6 0
4 years ago
Given: sin theta=2/3 and is in the second quadrant; evaluate the following expression. sin 2 theta
Dmitry [639]

Answer:The answer to your question is 3. 0

Step-by-step explanation:

Process

1.- Find the cos a

  Opposite side = 5

  Hypotenuse = 13

  Adjacent side = ?

  Adjacent side² = 13² - 5²

                          = 169 - 25

                          = 144

 Adjacent side = 12

cos a = 12/13

2.- Find the sin b

sin b = 5/13

3.- Use the formula below to find sin(a + b)

              sin (a + b) = sina cosb  + sin b cos a

- Substitution

              sin (a + b) = (5/13)((-12/13) + (5/13)/12/13)

- Simplification

              sin (a + b) = -60/169 + 60/13

- Result

              sin(a + b) = 0                        

Step-by-step explanation:

4 0
3 years ago
#7 Cecilia made a fruit basket for her grandmother. There were 3 bananas and 6 oranges in the basket. What is the ratio of the n
castortr0y [4]
The answer is A.

explanation:

the obvious ratio is 3:6, because there are 3 bananas and 6 oranges. if you simplify 3:6 it’s 1:2.

hope i helped :)
4 0
4 years ago
Read 2 more answers
Other questions:
  • Find the slope of the line.
    8·1 answer
  • If f(x)=x+8 and g(x) = -4x - 3, find (f+g)(x)
    13·1 answer
  • The difference of a number and 6 is the same as 5 times the sum of the number and 2. What is the number?
    7·1 answer
  • What is 2+2 (first on to answer get brainliest)
    11·2 answers
  • What is the value of (3-5)^4(2)-16/2?
    11·2 answers
  • Simplify. Assume that no denominator is equal to zero. ([3^2]^3g^3h^4)^2
    15·1 answer
  • What is the inverses
    11·1 answer
  • Only one unique triangle may be constructed with side lengths, 5.1 cm, 5.1 cm, and 7.37 cm.
    14·2 answers
  • A rectangle has an area of 14 square feet. one side length is 3.5 feet. Find the side length of the other side and then give the
    8·1 answer
  • Find the distance between each pair of points (round answer to the nearest tenth if necessary)
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!