Answer:
fghjk
Step-by-step explanation:
Answer:
The minimum value of f(x) is 2
Step-by-step explanation:
- To find the minimum value of the function f(x), you should find the value of x which has the minimum value of y, so we will use the differentiation to find it
- Differentiate f(x) with respect to x and equate it by 0 to find x, then substitute the value of x in f(x) to find the minimum value of f(x)
∵ f(x) = 2x² - 4x + 4
→ Find f'(x)
∵ f'(x) = 2(2)
- 4(1)
+ 0
∴ f'(x) = 4x - 4
→ Equate f'(x) by 0
∵ f'(x) = 0
∴ 4x - 4 = 0
→ Add 4 to both sides
∵ 4x - 4 + 4 = 0 + 4
∴ 4x = 4
→ Divide both sides by 4
∴ x = 1
→ The minimum value is f(1)
∵ f(1) = 2(1)² - 4(1) + 4
∴ f(1) = 2 - 4 + 4
∴ f(1) = 2
∴ The minimum value of f(x) is 2
You haven't provided the expression or the choices, therefore, I cannot provide an exact answer.
However, I'll try to help you understand the concept so that you can solve the question you have
Like radicals are characterized by the following:1- They both have the same root number (square root, cubic root , ...etc)
2- They both have the same radicand (meaning that the expression under the root is the same in both radicals)
Examples of like radicals:3

and 7

![\sqrt[5]{x^2y}](https://tex.z-dn.net/?f=%20%5Csqrt%5B5%5D%7Bx%5E2y%7D%20)
and 3
![\sqrt[5]{x^2y}](https://tex.z-dn.net/?f=%20%5Csqrt%5B5%5D%7Bx%5E2y%7D%20)
Check the choices you have. The one that satisfies the above two conditions would be your correct choice
Hope this helps :)
Answer:
well e stands for like what you multiply
Step-by-step explanation:
like well here is an example y=16e and you have to find what e stands for so E=