The <em>additional information</em> needed to prove that both triangles are congruent by the SSS Congruence Theorem would be: <em>C. HJ ≅ LN</em>
<em>Recall:</em>
- Based on the Side-Side-Side Congruence Theorem, (SSS), two triangles can be said to be congruent to each other if they have three pairs of congruent sides.
Thus, in the two triangles given, the two triangles has:
- Two pairs of congruent sides - HI ≅ ML and IJ ≅ MN
Therefore, an <em>additional information</em> needed to prove that both triangles are congruent by the SSS Congruence Theorem would be: <em>C. HJ ≅ LN</em>
<em />
Learn more about SSS Congruence Theorem on:
brainly.com/question/4280133
It depends on how many options you have
You multiply the total number of books you have time 5 because you can choose 5
Answer:
Fraction of fire trucks = 
Total number of toy cars = 
Step-by-step explanation:
Fraction of sports car = 
Fraction of remaining cars 
So,
Fraction of pick up cars = 
Therefore,
Fraction of fire trucks = 
That is Number of fire trucks =
( Total number of toy cars )
Number of fire trucks = 4
Total number of toy cars = 
Answer:
O It has the same slope and a different y-intercept.
Step-by-step explanation:
y = mx + b
m = 3/8
b = 12
y = (3/8)x + 12
---
Data in the table: slope is the rise (y) over the run (x) between two points (assuming the data represent a linear line).
Change in x and y between two points. I'll choose (-2/3,-3/4) and (1/3,-3/8).
Change in y: (-3/8 - (-3/4)) = (-3/8 - (-6/8)) = 3/8
Change in x: (1/3 - (-2/3)) = (1/3+2/3) = 3/3 = 1
Slope = (Change in y)/(Change in x) = (3/8)/1 = 3/8
The slope of the equation is the same as the data in the table.
Now let's determine if the y-intercept is also the same (12). The equation for the data table is y = (2/3)x + b, and we want to find b. Enter any of the data points for x and y and then solve for b. I'll use (-2/3, -3/4)
y = (3/8)x + b
Use (-2/3, -3/4)
-3/4 =- (3/8)(-2/3) + b
-3/4 = (-6/24) + b
b = -(3/4) + (6/24)
b = -(9/12) + (3/12)
b = -(6/12)
b = -(1/2)
The equation of the line formed by the data table is y = (3/8)x -(1/2)
Therefore, It has the same slope and a different y-intercept.
The answer is No, they are not proportional. This is because 8/42 is not equal to 20/105.