Answer:
Step-by-step explanation:
Your answer is A.
Anytime you have a variable or something that changes such as the month that is a variable so that means its going to be your x/m in this case
According to the secant-tangent theorem, we have the following expression:

Now, we solve for <em>x</em>.

Then, we use the quadratic formula:
![x_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=x_%7B1%2C2%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D)
Where a = 1, b = 6, and c = -315.
![\begin{gathered} x_{1,2}=\frac{-6\pm\sqrt[]{6^2-4\cdot1\cdot(-315)}}{2\cdot1} \\ x_{1,2}=\frac{-6\pm\sqrt[]{36+1260}}{2}=\frac{-6\pm\sqrt[]{1296}}{2} \\ x_{1,2}=\frac{-6\pm36}{2} \\ x_1=\frac{-6+36}{2}=\frac{30}{2}=15 \\ x_2=\frac{-6-36}{2}=\frac{-42}{2}=-21 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x_%7B1%2C2%7D%3D%5Cfrac%7B-6%5Cpm%5Csqrt%5B%5D%7B6%5E2-4%5Ccdot1%5Ccdot%28-315%29%7D%7D%7B2%5Ccdot1%7D%20%5C%5C%20x_%7B1%2C2%7D%3D%5Cfrac%7B-6%5Cpm%5Csqrt%5B%5D%7B36%2B1260%7D%7D%7B2%7D%3D%5Cfrac%7B-6%5Cpm%5Csqrt%5B%5D%7B1296%7D%7D%7B2%7D%20%5C%5C%20x_%7B1%2C2%7D%3D%5Cfrac%7B-6%5Cpm36%7D%7B2%7D%20%5C%5C%20x_1%3D%5Cfrac%7B-6%2B36%7D%7B2%7D%3D%5Cfrac%7B30%7D%7B2%7D%3D15%20%5C%5C%20x_2%3D%5Cfrac%7B-6-36%7D%7B2%7D%3D%5Cfrac%7B-42%7D%7B2%7D%3D-21%20%5Cend%7Bgathered%7D)
<h2>Hence, the answer is 15 because lengths can't be negative.</h2>
Answer:
Step-by-step explanation:
The solution of a system of linear equations is the point of intersection of their graphs because the intersection represents the only x or y values that will satisfy both/all equations. The graph visually shows that the intersection of these equations is the only spot on the graph that all of the equations have in common. This means that only this spot will satisfy all equations. For example, the intersection may be (0,1); this means that for all equations an x value of 0 will always result in the y value of 1. However, an x or y value that satisfies one equation may not satisfy the others if they do not lead to the desired outcome.
Answer:
The probability the student studies Art and
Biology is 0.2143.
Step-by-step explanation:
Denote the events as follows:
A = a students studies Art
B= a students studies Biology
The information provided is:
N = 42
n (An B) = 9
n (A' n B) = 10
n (A' n B') =7
Then the number of students who study Art
but not Biology is:
n(An B') = N -n (An B) -n (A' nB) - n (A'n B')
= 42 - 10 - 7 - 9
= 16
The number of students who study Art but
not Biology is 16.
Compute the probability the student studies
Art and Biology as follows:
P(ANB)
n(ANB)
= 0.2143
Thus, the probability the student studies Art
and Biology is 0.2143.
Answer:

Step-by-step explanation:
1. Combine like terms
2y-7y = -5y
-5y=5
2. Divide by -5 and the answer is 